Download Free Effects Of Welding Heat On Hardened Aluminum Alloys Book in PDF and EPUB Free Download. You can read online Effects Of Welding Heat On Hardened Aluminum Alloys and write the review.

Lightweight alloys have become of great importance in engineering for construction of transportation equipment. At present, the metals that serve as the base of the principal light alloys are aluminum and magnesium. One of the most important lightweight alloys are the aluminum alloys in use for several applications (structural components wrought aluminum alloys, parts and plates). However, some casting parts that have low cost of production play important role in aircraft parts. Magnesium and its alloys are among the lightest of all metals and the sixth most abundant metal on earth. Magnesium is ductile and the most machinable of all metals. Many of these light weight alloys have appropriately high strength to warrant their use for structural purposes, and as a result of their use, the total weight of transportation equipment has been considerably decreased.
The welding of structural materials, such as aluminum alloys 6063, 6061 and 6005A, does have an adverse influence on the microstructure and mechanical properties at locations immediately adjacent to the weld. The influence of heat input, due to welding and artificial aging, was investigated on aluminum alloy extrusions of 6063, 6061 and 6005A. Uniaxial tensile tests, in conjunction with scanning electron microscopy observations, were done on the: (i) as-provided alloy in the natural temper, (ii) the as-provided alloy artificially aged, (iii) the as-welded alloy in the natural temper, and (iv) the as-welded alloy subject to heat treatment. The welding process used was gas metal arc (GMAW) with spray transfer at approximately 140-220 amps of current at 22-26 volts. The artificial aging used was a precipitation heat treatment for 6 hours at 360oF. The aluminum alloys of the 6XXX series contain magnesium (Mg) and silicone (Si) and are responsive to temperature. Optical microscopy observations revealed the influence of artificial aging to cause change in both size and shape of the second-phase particles present and distributed through the microstructure. The temperature and time of exposure to heat treatment did cause the second-phase particles to both precipitate and migrate through the microstructure resulting in an observable change in strength of the material. Uniaxial tensile tests were conducted for desired specimen thicknesses for sake of comparison. Section 6.4.2-2 of the 2010 Aluminum Design manual discusses provisions for mechanical properties of welded and artificially aged aluminum light poles, fabricated from aluminum alloy 6063 and 6005A. A basis for these provisions was the result of older round-robin testing programs [2, 3]. However, results of the studies were never placed in the open literature. Hence, the focus of this study was to determine the expected mechanical properties of welded and artificially aged 6063, 6061 and 6005A aluminum alloys and publish the results. Tensile tests revealed the welded aluminum alloy to have lower strength, both yield and ultimate tensile strength, when compared to the as-received un-welded counterpart. The impact of post-weld heat treatment on tensile properties and resultant fracture behavior is presented and briefly discussed in light of intrinsic microstructural effects and nature of loading.
Results of tests show that a slowly rising condenser-discharge preheat current with a rapidly rising welding current afford no less expulsion than a rapidly rising welding current alone, and was inferior to a slowly rising welding current alone. In one case using slowly rising current for preheating and welding proved beneficial although generally, utilizing a raised electrode welding force to decrease expulsion was more practicable. Postheating had no effect on sheart strength until the current sufficient to remelt the welds, which greatly increased the weld diameter and shear strength.
On the First Edition: "The book is a success in providing a comprehensive introduction to the use of aluminum structures . . . contains lots of useful information." —Materials & Manufacturing Processes "A must for the aluminum engineer. The authors are to be commended for their painstaking work." —Light Metal Age Technical guidance and inspiration for designing aluminum structures Aluminum Structures, Second Edition demonstrates how strong, lightweight, corrosion-resistant aluminum opens up a whole new world of design possibilities for engineering and architecture professionals. Keyed to the revised Specification for Aluminum Structures of the 2000 edition of the Aluminum Design Manual, it provides quick look-up tables for design calculations; examples of recently built aluminum structures-from buildings to bridges; and a comparison of aluminum to other structural materials, particularly steel. Topics covered include: Structural properties of aluminum alloys Aluminum structural design for beams, columns, and tension members Extruding and other fabrication techniques Welding and mechanical connections Aluminum structural systems, including space frames, composite members, and plate structures Inspection and testing Load and resistance factor design Recent developments in aluminum structures
The purpose of this report is to summarize the present state of aluminum-welding technology. The major topics covered are: Basic metallurgy of various heat-treatable and non-heat-treatable alloy classes; welding processes used for joining aluminum with emphasis on newer processes and procedures which are considered important in defense metals industries; welding characteristics of various alloys; comparison of tensile properties, cracking tendencies, notch toughness, and stress-corrosion characteristics of various weldments; dissimilar metal welds; and causes of porosity and cracking of aluminum welds and the effect of porosity on weld strength. (Author).
The Welding of Aluminium and its Alloys is a practical user's guide to all aspects of welding aluminium and aluminium alloys. It provides a basic understanding of the metallurgical principles involved showing how alloys achieve their strength and how the process of welding can affect these properties. The book is intended to provide engineers with perhaps little prior understanding of metallurgy and only a brief acquaintance with the welding processes involved with a concise and effective reference to the subject.It is intended as a practical guide for the Welding Engineer and covers weldability of aluminium alloys; process descriptions, advantages, limitations, proposed weld parameters, health and safety issues; preparation for welding, quality assurance and quality control issues along with problem solving.The book includes sections on parent metal storage and preparation prior to welding. It describes the more frequently encountered processes and has recommendations on welding parameters that may be used as a starting point for the development of a viable welding procedure. Included in these chapters are hints and tips to avoid some of the pitfalls of welding these sometimes-problematic materials. The content is both descriptive and qualitative. The author has avoided the use of mathematical expressions to describe the effects of welding.This book is essential reading for welding engineers, production engineers, production managers, designers and shop-floor supervisors involved in the aluminium fabrication industry. A practical user's guide by a respected expert to all aspects of welding of aluminium Designed to be easily understood by the non-metallurgist whilst covering the most necessary metallurgical aspects Demonstrates best practice in fabricating aluminium structures
This is a collection of papers presented at the 13th International Conference on Aluminum Alloys (ICAA-13), the premier global conference for exchanging emerging knowledge on the structure and properties of aluminum materials. The papers are organized around the topics of the science of aluminum alloy design for a range of market applications; the accurate prediction of material properties; novel aluminum products and processes; and emerging developments in recycling and applications using both monolithic and multi-material solutions.