Download Free Effects Of Lipid On Membrane Protein Function Book in PDF and EPUB Free Download. You can read online Effects Of Lipid On Membrane Protein Function and write the review.

The second edition of this book on lipids, lipoprotein and membrane biochemistry has two major objectives - to provide anadvanced textbook for students in these areas of biochemistry,and to summarise the field for scientists pursuing research inthese and related fields. Since the first edition of this book was published in 1985 theemphasis on research in the area of lipid and membrane biochemistry has evolved in new directions. Consequently, thesecond edition has been modified to include four chapters on lipoproteins. Moreover, the other chapters have been extensivelyupdated and revised so that additional material covering the areas of cell signalling by lipids, the assembly of lipids andproteins into membranes, and the increasing use of molecular biological techniques for research in the areas of lipid, lipoprotein and membrane biochemistry have been included. Each chapter of the textbook is written by an expert in the field, but the chapters are not simply reviews of current literature. Rather, they are written as current, readable summaries of these areas of research which should be readily understandable to students and researchers who have a basic knowledge of general biochemistry. The authors were selected fortheir abilities both as researchers and as communicators. In addition, the editors have carefully coordinated the chapters sothat there is little overlap, yet extensive cross-referencing among chapters.
Biochemistry of Lipids: Lipoproteins and Membranes, Volume Six, contains concise chapters that cover a wide spectrum of topics in the field of lipid biochemistry and cell biology. It provides an important bridge between broad-based biochemistry textbooks and more technical research publications, offering cohesive, foundational information. It is a valuable tool for advanced graduate students and researchers who are interested in exploring lipid biology in more detail, and includes overviews of lipid biology in both prokaryotes and eukaryotes, while also providing fundamental background on the subsequent descriptions of fatty acid synthesis, desaturation and elongation, and the pathways that lead the synthesis of complex phospholipids, sphingolipids, and their structural variants. Also covered are sections on how bioactive lipids are involved in cell signaling with an emphasis on disease implications and pathological consequences. - Serves as a general reference book for scientists studying lipids, lipoproteins and membranes and as an advanced and up-to-date textbook for teachers and students who are familiar with the basic concepts of lipid biochemistry - References from current literature will be included in each chapter to facilitate more in-depth study - Key concepts are supported by figures and models to improve reader understanding - Chapters provide historical perspective and current analysis of each topic
Published continuously since 1944, Advances in Protein Chemistry and Structural Biology has been a continuous, essential resource for protein chemists. Covering reviews of methodology and research in all aspects of protein chemistry, including purification/expression, proteomics, modeling and structural determination and design, each volume brings forth new information about protocols and analysis of proteins while presenting the most recent findings from leading experts in a broad range of protein-related topics. - Covers reviews of methodology and research in all aspects of protein chemistry - Brings forth new information about protocols and analysis of proteins while presenting the most recent findings from leading experts in a broad range of protein-related topics
Free energy constitutes the most important thermodynamic quantity to understand how chemical species recognize each other, associate or react. Examples of problems in which knowledge of the underlying free energy behaviour is required, include conformational equilibria and molecular association, partitioning between immiscible liquids, receptor-drug interaction, protein-protein and protein-DNA association, and protein stability. This volume sets out to present a coherent and comprehensive account of the concepts that underlie different approaches devised for the determination of free energies. The reader will gain the necessary insight into the theoretical and computational foundations of the subject and will be presented with relevant applications from molecular-level modelling and simulations of chemical and biological systems. Both formally accurate and approximate methods are covered using both classical and quantum mechanical descriptions. A central theme of the book is that the wide variety of free energy calculation techniques available today can be understood as different implementations of a few basic principles. The book is aimed at a broad readership of graduate students and researchers having a background in chemistry, physics, engineering and physical biology.
This book explores the latest data dealing with mechanosensitive channels research results. It was compiled by a group of internationally recognized scientists leading in the field of mechanosensitive ion channels or mechanically gated channels and signaling cascades research. Key problems of cell mechanobiology are also discussed. As a whole, the volume dwells on the major issues of mechanical stress influencing the ion channels and intracellular signaling pathways.
Lipids are the most abundant organic compounds found in the brain, accounting for up to 50% of its dry weight. The brain lipidome includes several thousands of distinct biochemical structures whose expression may greatly vary according to age, gender, brain region, cell type, as well as subcellular localization. In synaptic membranes, brain lipids specifically interact with neurotransmitter receptors and control their activity. Moreover, brain lipids play a key role in the generation and neurotoxicity of amyloidogenic proteins involved in the pathophysiology of neurological diseases. The aim of this book is to provide for the first time a comprehensive overview of brain lipid structures, and to explain the roles of these lipids in synaptic function, and in neurodegenerative diseases, including Alzheimer's, Creutzfeldt-Jakob's and Parkinson's. To conclude the book, the authors present new ideas that can drive innovative therapeutic strategies based on the knowledge of the role of lipids in brain disorders. - Written to provide a "hands-on" approach for readers - Biochemical structures explained with molecular models, and molecular mechanisms explained with simple drawings - Step-by-step guide to memorize and draw lipid structures - Each chapter features a content summary, up-to-date references for additional study, and a key experiment with an explanation of the technique
Lipids are functionally versatile molecules. They have evolved from relatively simple hydrocarbons that serve as depot storages of metabolites and barriers to the permeation of solutes into complex compounds that perform a variety of signalling functions in higher organisms. This volume is devoted to the polar lipids and their constituents. We have omitted the neutral lipids like fats and oils because their function is generally to act as deposits of metabolizable substrates. The sterols are also outside the scope of the present volume and the reader is referred to volume 28 of this series which is the subject of cholesterol. The polar lipids are comprised of fatty acids attached to either glycerol or sphingosine. The fatty acids themselves constitute an important reservoir of substrates for conversion into families of signalling and modulating molecules including the eicosanoids amongst which are the prostaglandins, thromboxanes and leucotrienes. The way fatty acid metabolism is regulated in the liver and how fatty acids are desaturated are subjects considered in the first part of this volume. This section also deals with the modulation of protein function and inflammation by unsaturated fatty acids and their derivatives. New insights into the role of fatty acid synthesis and eicosenoid function in tumour progression and metastasis are presented.
A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid