Download Free Effects Of Landscape Disturbances On Autotrophic Processes Within Arkansas Ozark Streams Book in PDF and EPUB Free Download. You can read online Effects Of Landscape Disturbances On Autotrophic Processes Within Arkansas Ozark Streams and write the review.

Land-use change is one of the most widespread human impacts and can influence abiotic and biotic processes within surrounding streams. For example, streams in agricultural and urban watersheds receive greater light and nutrient inputs that can promote increased algal growth and primary production. Natural gas (NG) infrastructure development, a recent land use change in many regions, may also stimulate forested stream primary production, by reducing forest cover and increasing sediments and nutrient transport. I sampled streams across a NG activity gradient for algal biomass and gross primary production (GPP) to assess potential effects of this emerging land-use type. Algal biomass and GPP were positively associated with NG activity during winter, suggesting algal stimulation by nutrient enrichment of streams impacted by NG activity. To examine the nutrient limitation status of my study streams, I experimentally manipulated nitrogen (N) and phosphorus (P) in diffusing substrata and found that while P was not limiting, N-limitation was negatively related to NG activity (R2= 0.57; p= 0.03). Best management practices (BMPs) have been implemented to help reduce sediment inputs, associated with NG activity on streams, though little has been done to assess their effectiveness. I used a before-after control-impact design to test the effectiveness of implemented BMPs at reducing impacts to autotrophic processes in headwater streams and the South Fork Little Red River. There were no differences between reference and impacted sites before and after the disturbance occurred for the autotrophic processes measured. These results suggest that BMPs were effective at mitigating effects of low levels of NG activity. However, NG activity in the study watersheds was less than in surrounding areas, potentially contributing to the absence of change. In my final study, I examined how human land-use affects recovery of algal communities and metabolic processes to flood disturbances. Biomass and metabolism recovered more rapidly in urban and agricultural streams than forested streams likely due to increased nutrient availability. These findings highlight the defining role of increased nutrient availability as one main driver of effects of human land-use change on autotrophic processes in stream ecosystems.
Methods in Stream Ecology, Second Edition, provides a complete series of field and laboratory protocols in stream ecology that are ideal for teaching or conducting research. This updated edition reflects recent advances in the technology associated with ecological assessment of streams, including remote sensing. In addition, the relationship between stream flow and alluviation has been added, and a new chapter on riparian zones is also included. The book features exercises in each chapter; detailed instructions, illustrations, formulae, and data sheets for in-field research for students; and taxanomic keys to common stream invertebrates and algae. With a student-friendly price, this book is key for all students and researchers in stream and freshwater ecology, freshwater biology, marine ecology, and river ecology. This text is also supportive as a supplementary text for courses in watershed ecology/science, hydrology, fluvial geomorphology, and landscape ecology. Exercises in each chapter Detailed instructions, illustrations, formulae, and data sheets for in-field research for students Taxanomic keys to common stream invertebrates and algae Link from Chapter 22: FISH COMMUNITY COMPOSITION to an interactive program for assessing and modeling fish numbers
Ecosystem research has emerged in recent decades as a vital, successful, and sometimes controversial approach to environmental science. This book emphasizes the idea that much of the progress in ecosystem research has been driven by the emergence of new environmental problems that could not be addressed by existing approaches. By focusing on successes and limitations of ecosystems studies, the book explores avenues for future ecosystem-level research.
Forest land managers face the challenges of preparing their forests for the impacts of climate change. However, climate change adds a new dimension to the task of developing and testing science-based management options to deal with the effects of stressors on forest ecosystems in the southern United States. The large spatial scale and complex interactions make traditional experimental approaches difficult. Yet, the current progression of climate change science offers new insights from recent syntheses, models, and experiments, providing enough information to start planning now for a future that will likely include an increase in disturbances and rapid changes in forest conditions. Climate Change Adaptation and Mitigation Management Options: A Guide for Natural Resource Managers in Southern Forest Ecosystems provides a comprehensive analysis of forest management options to guide natural resource management in the face of future climate change. Topics include potential climate change impacts on wildfire, insects, diseases, and invasives, and how these in turn might affect the values of southern forests that include timber, fiber, and carbon; water quality and quantity; species and habitats; and recreation. The book also considers southern forest carbon sequestration, vulnerability to biological threats, and migration of native tree populations due to climate change. This book utilizes the most relevant science and brings together science experts and land managers from various disciplines and regions throughout the south to combine science, models, and on-the-ground experience to develop management options. Providing a link between current management actions and future management options that would anticipate a changing climate, the authors hope to ensure a broader range of options for managing southern forests and protecting their values in the future.
Stream Ecosystems in a Changing Environment synthesizes the current understanding of stream ecosystem ecology, emphasizing nutrient cycling and carbon dynamics, and providing a forward-looking perspective regarding the response of stream ecosystems to environmental change. Each chapter includes a section focusing on anticipated and ongoing dynamics in stream ecosystems in a changing environment, along with hypotheses regarding controls on stream ecosystem functioning. The book, with its innovative sections, provides a bridge between papers published in peer-reviewed scientific journals and the findings of researchers in new areas of study. Presents a forward-looking perspective regarding the response of stream ecosystems to environmental change Provides a synthesis of the latest findings on stream ecosystems ecology in one concise volume Includes thought exercises and discussion activities throughout, providing valuable tools for learning Offers conceptual models and hypotheses to stimulate conversation and advance research
The advent of ecosystem ecology has created great difficulties for ecologists primarily trained as biologists, since inevitably as the field grew, it absorbed components of other disciplines relatively foreign to most ecologists yet vital to the understanding of the structure and function of ecosystems. From the point of view of the biological ecologist struggling to understand the enormous complexity of the biological functions within an ecosystem, the added necessity of integrating biology with geochemis try, hydrology, micrometeorology, geomorphology, pedology, and applied sciences (like silviculture and land use management) often has appeared as an impossible requirement. Ecologists have frequently responded by limiting their perspective to biology with the result that the modeling of species interactions is sometimes considered as modeling ecosystems, or modeling the living fraction of the ecosystems is considered as modeling whole ecosystems. Such of course is not the case, since understanding the structure and function of ecosystems requires sound understanding of inanimate as well as animate processes and often neither can be under stood without the other. About 15 years ago, a view of ecology somewhat different from most then prevailing, coupled with a strong dose of naivete and a sense of exploration, lead us to believe that consideration of the inanimate side of ecosystem function rather than being just one more annoying complexity might provide exceptional advantages in the study of ecosystems. To examine this possibility, we took two steps which occurred more or less simultaneously.
Algae are an important component of aquatic benthic ecosystems because they reflect the health of their environment through their density, abundance, and diversity. This comprehensive and authoritative text is divided into three sections to offer complete coverage of the discussion in this field. The first section introduces the locations of benthic algae in different ecosystems, like streams, large rivers, lakes, and other aquatic habitats. The second section is devoted to the various factors, both biotic and abiotic, that affect benthic freshwater algae. The final section of the book focuses on the role played by algae in a variety of complex freshwater ecosystems. As concern over environmental health escalates, the keystone and pivotal role played by algae is becoming more apparent. This volume in the Aquatic Ecology Series represents an important compilation of the latest research on the crucial niche occupied by algae in aquatic ecosystems. Presents algae as the important player in relation to environmental health Prepared by leading authorities in the field Includes comprehensive treatment of the functions of benthic algae as well as the factors that affect these important aquatic organisms Acts as an important reference for anyone interested in understanding and managing freshwater ecosystems