Download Free Effects Of Land Use Changes On Terrestrial Carbon Stocks Carbon Sequestration And Carbon Emission Book in PDF and EPUB Free Download. You can read online Effects Of Land Use Changes On Terrestrial Carbon Stocks Carbon Sequestration And Carbon Emission and write the review.

To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.
The European Forest Institute (EFI) has five Research and Development priority ar eas: forest sustainability, forestry and possible climate change, structural changes in markets for forest products and services, policy analysis, and forest sector informa tion services and research methodology. In the area of forest sustainability our most important activity has been the project "Growth trends of European forests", the re sults of which are presented in this book. The project was started in August 1993 under the leadership of Prof. Dr. Heinrich Spiecker from the University of Freiburg, Germany, and it is one of the first EFI's research projects after its establishment in 1993. The main purpose of the project was to analyse whether site productivity has changed in European forests during the last decades. While several forest growth studies have been published at local, re gional and national levels, this project has aimed at stimulating a joint effort in iden tifying and quantifying possible growth trends and their spatial and temporal extent at the European level. Debate on forest decline and possible climate change, as well as considerations re lated to the long term supply of wood underline the importance of this project, both from environmental and industrial points of view. Knowledge on possible changes in growth trends is vital for the sustainable management of forest ecosystems.
Comprehensive exploration of how land use interacts with the atmosphere and carbon cycle, for advanced students, researchers and policy makers.
The signals are everywhere that our planet is experiencing significant climate change. It is clear that we need to reduce the emissions of carbon dioxide and other greenhouse gases from our atmosphere if we want to avoid greatly increased risk of damage from climate change. Aggressively pursuing a program of emissions abatement or mitigation will show results over a timescale of many decades. How do we actively remove carbon dioxide from the atmosphere to make a bigger difference more quickly? As one of a two-book report, this volume of Climate Intervention discusses CDR, the carbon dioxide removal of greenhouse gas emissions from the atmosphere and sequestration of it in perpetuity. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration introduces possible CDR approaches and then discusses them in depth. Land management practices, such as low-till agriculture, reforestation and afforestation, ocean iron fertilization, and land-and-ocean-based accelerated weathering, could amplify the rates of processes that are already occurring as part of the natural carbon cycle. Other CDR approaches, such as bioenergy with carbon capture and sequestration, direct air capture and sequestration, and traditional carbon capture and sequestration, seek to capture CO2 from the atmosphere and dispose of it by pumping it underground at high pressure. This book looks at the pros and cons of these options and estimates possible rates of removal and total amounts that might be removed via these methods. With whatever portfolio of technologies the transition is achieved, eliminating the carbon dioxide emissions from the global energy and transportation systems will pose an enormous technical, economic, and social challenge that will likely take decades of concerted effort to achieve. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration will help to better understand the potential cost and performance of CDR strategies to inform debate and decision making as we work to stabilize and reduce atmospheric concentrations of carbon dioxide.
Remote sensing is an integral part of geography, GIS and cartography, used by academics in the field and professionals in all sorts of occupations. The 1990s saw the development of a range of new methods of classifying remote sensing images and data, both optical imaging and microwave imaging. This comprehensive survey of the various techniques pul
Arising from a scientific conference marking the 100th anniversary of her birth, this book honors the life and work of the social scientist and diplomat Ester Boserup, who blazed new trails in her interdisciplinary approach to development and sustainability.
This book is a ready reference on recent innovations in dryland agriculture and reinforces the understanding for its utilization to develop environmentally sustainable and profitable food production systems. It covers the basic concepts and history, components and elements, breeding and modelling efforts, and potential benefits, experiences, challenges and innovations relevant to agriculture in dryland areas around world.
This book compiles available knowledge of the response of mountain ecosystems to recent climate and land use change and intends to bridge the gap between science, policy and the community concerned. The chapters present key concepts, major drivers and key processes of mountain response, providing transdisciplinary orientation to mountain studies incorporating experiences of academics, community leaders and policy-makers from developed and less developed countries. The book chapters are arranged in two sections. The first section concerns the response processes of mountain environments to climate change. This section addresses climate change itself (past, current and future changes of temperature and precipitation) and its impacts on the cryosphere, hydrosphere, biosphere, and human-environment systems. The second section focuses on the response processes of mountain environments to land use/land cover change. The case studies address effects of changing agriculture and pastoralism, forest/water resources management and urbanization processes, landscape management, and biodiversity conservation. The book is designed as an interdisciplinary publication which critically evaluates developments in mountains of the world with contributions from both social and natural sciences.
Poor land management has degraded vast amounts of land, reduced our ability to produce enough food, and is a major threat to rural livelihoods in many developing countries. This book provides a thorough analysis of the multifaceted impacts of land use on soils. Abundantly illustrated with full-color images, it brings together renowned academics and policy experts to analyze the patterns, driving factors and proximate causes, and the socioeconomic impacts of soil degradation.