Download Free Effects Of Forest Practices On Peak Flows And Consequent Channel Response Book in PDF and EPUB Free Download. You can read online Effects Of Forest Practices On Peak Flows And Consequent Channel Response and write the review.

Includes a database of relevant studies reporting peak flow data across rain-, transient-, and snow-dominated hydrologic zones. Provides a quantitative comparison of changes in peak flow across both a range of flows and forest practices. Increases in peak flows generally diminish with decreasing intensity of percentage of watershed harvested and lengthening recurrence intervals of flow. Peak flow effects on channel morphology should be confined to stream reaches where channel gradients are less than 0.02 and streambeds are composed of gravel and finer material. Managers should evaluate the potential risk of peak flow increases based on factors such as presence of roads, specific mgmt. treatments employed, and watershed drainage efficiency.
This is a state-of-the-science synthesis of the effects of forest harvest activities on peak flows and channel morphology in the Pacific Northwest, with a specific focus on western Oregon and Washington. We develop a database of relevant studies reporting peak flow data across rain-, transient-, and snow-dominated hydrologic zones, and provide a quantitative comparison of changes in peak flow across both a range of flows and forest practices. Increases in peak flows generally diminish with decreasing intensity of percentage of watershed harvested and lengthening recurrence intervals of flow. Watersheds located in the rain-dominated zone appear to be less sensitive to peak flow changes than those in the transient snow zone; insufficient data limit interpretations for the snow zone. Where present, peak flow effects on channel morphology should be confined to stream reaches where channel gradients are less than approximately 0.02 and streambeds are composed of gravel and finer material. We provide guidance as to how managers might evaluate the potential risk of peak flow increases based on factors such as presence of roads, watershed drainage efficiency, and specific management treatments employed. The magnitude of effects of forest harvest on peak flows in the Pacific Northwest, as represented by the data reported here, are relatively minor in comparison to other anthropogenic changes to streams and watersheds.
This is a state-of-the-science synthesis of the effects of forest harvest activities on peak flows and channel morphology in the Pacific Northwest, with a specific focus on western Oregon and Washington. We develop a database of relevant studies reporting peak flow data across rain-, transient-, and snow-dominated hydrologic zones, and provide a quantitative comparison of changes in peak flow across both a range of flows and forest practices. Increases in peak flows generally diminish with decreasing intensity of percentage of watershed harvested and lengthening recurrence intervals of flow. Watersheds located in the rain-dominated zone appear to be less sensitive to peak flow changes than those in the transient snow zone; insufficient data limit interpretations for the snow zone. Where present, peak flow effects on channel morphology should be confined to stream reaches where channel gradients are less than approximately 0.02 and streambeds are composed of gravel and finer material. We provide guidance as to how managers might evaluate the potential risk of peak flow increases based on factors such as presence of roads, watershed drainage efficiency, and specific management treatments employed. The magnitude of effects of forest harvest on peak flows in the Pacific Northwest, as represented by the data reported here, are relatively minor in comparison to other anthropogenic changes to streams and watersheds.
Of all the outputs of forests, water may be the most important. Streamflow from forests provides two-thirds of the nation's clean water supply. Removing forest cover accelerates the rate that precipitation becomes streamflow; therefore, in some areas, cutting trees causes a temporary increase in the volume of water flowing downstream. This effect has spurred political pressure to cut trees to increase water supply, especially in western states where population is rising. However, cutting trees for water gains is not sustainable: increases in flow rate and volume are typically short-lived, and the practice can ultimately degrade water quality and increase vulnerability to flooding. Forest hydrology, the study of how water flows through forests, can help illuminate the connections between forests and water, but it must advance if it is to deal with today's complexities, including climate change, wildfires, and changing patterns of development and ownership. This book identifies actions that scientists, forest and water managers, and citizens can take to help sustain water resources from forests.