Download Free Effects Of Changing Land Use On Macroinvertebrate Communities In North Central Arkansas Book in PDF and EPUB Free Download. You can read online Effects Of Changing Land Use On Macroinvertebrate Communities In North Central Arkansas and write the review.

Increasing understanding of soil carbon (C) sequestration dynamics and general functioning in disappearing native grassland ecosystems, has the potential to enhance soil rehabilitation and ecosystem restoration. The objective of this study was to evaluate the effects of landuse (native tallgrass prairie and managed agriculture) and physiographic region (northwest Arkansas and east-central Arkansas) on the change in soil C and nitrogen (N) storage and other soil properties over a 15-year period. Despite the native prairie losing soil C at a rate of 4.7¬†Mg¬†ha,àí1¬†year,àí1 over the 15-year duration of this study, soil C storage in 2016 was more than 2.5 times greater in the native prairie than in the cultivated agroecosystems in the Grand Prairie. Averaged across landuse, TC concentration (P¬†
Land-use change is one of the most widespread human impacts and can influence abiotic and biotic processes within surrounding streams. For example, streams in agricultural and urban watersheds receive greater light and nutrient inputs that can promote increased algal growth and primary production. Natural gas (NG) infrastructure development, a recent land use change in many regions, may also stimulate forested stream primary production, by reducing forest cover and increasing sediments and nutrient transport. I sampled streams across a NG activity gradient for algal biomass and gross primary production (GPP) to assess potential effects of this emerging land-use type. Algal biomass and GPP were positively associated with NG activity during winter, suggesting algal stimulation by nutrient enrichment of streams impacted by NG activity. To examine the nutrient limitation status of my study streams, I experimentally manipulated nitrogen (N) and phosphorus (P) in diffusing substrata and found that while P was not limiting, N-limitation was negatively related to NG activity (R2= 0.57; p= 0.03). Best management practices (BMPs) have been implemented to help reduce sediment inputs, associated with NG activity on streams, though little has been done to assess their effectiveness. I used a before-after control-impact design to test the effectiveness of implemented BMPs at reducing impacts to autotrophic processes in headwater streams and the South Fork Little Red River. There were no differences between reference and impacted sites before and after the disturbance occurred for the autotrophic processes measured. These results suggest that BMPs were effective at mitigating effects of low levels of NG activity. However, NG activity in the study watersheds was less than in surrounding areas, potentially contributing to the absence of change. In my final study, I examined how human land-use affects recovery of algal communities and metabolic processes to flood disturbances. Biomass and metabolism recovered more rapidly in urban and agricultural streams than forested streams likely due to increased nutrient availability. These findings highlight the defining role of increased nutrient availability as one main driver of effects of human land-use change on autotrophic processes in stream ecosystems.
The aim of this book is to provide an accessible, up-to-date introduction to stream and river biology. Beginning with the physical features that define running water habitats, the book goes on to look at these organisms and their ecology.
Activities associated with agricultural land use intensification, one of the primary sources of anthropogenic stress to aquatic ecosystems, degrade freshwater stream health and present a significant challenge to resource managers in terms of monitoring and remediation. Biomonitoring of benthic macroinvertebrates, a common method of measuring the impact of anthropogenic stress on freshwater stream health, has been used to characterize the impact of agricultural activities. However, in order for this technique to be useful to resource managers in the protection of freshwater streams from agricultural degradation, reliable methods are needed not only to determine the impact of agricultural stress on benthic macroinvertebrate communities, but also whether agriculture best management practices (BMP's) mitigate those impacts ...
Mayflies are one of the world’s most diverse, abundant and important aquatic insects. Famous for their brief adult life spans, mayflies play a key role in the ecology of aquatic and associated terrestrial ecosystems, and are critical bioindicators of ecosystem health. Sitting at the southern limit of Australia’s temperate zone, Tasmania is home to a diverse array of mayflies and renowned fisheries based on them. The state’s storied ‘Lambda Dun’ hatches bring fishers from all over Australia to try their luck each summer on its rivers and ponds. Yet little is known about their behaviour and ecology, and more than half of the mayflies in Tasmania have never been described. This extensively illustrated book is the first synthesis of the biology of south-east Australia’s mayflies, with a focus on those in Tasmania. It combines information gleaned from scientific literature as well as more than 30 years of the author’s studies and flyfishing experiences. It explores the biology, identification, conservation, ecology and behaviour of mayflies, and also includes fishing strategies and fly patterns. Tasmanian Mayflies is an essential information source for Australia’s aquatic biologists and for flyfishers, novice and experienced alike, who chase the insects and the fish that feed on them.