Download Free Effectiveness Of National Biosurveillance Systems Book in PDF and EPUB Free Download. You can read online Effectiveness Of National Biosurveillance Systems and write the review.

For many years, concerns about bioterrorism and emerging infectious diseases have drawn attention to the need for strong surveillance systems. Experts are working to develop new and better ways to detect these biological threats as quickly as possible. One effort in this area is the Department of Homeland Security's BioWatch program. To evaluate the effectiveness of the BioWatch program, the Institute of Medicine (IOM) and National Research Council (NRC) convened the Committee on Effectiveness of National Biosurveillance Systems: BioWatch and the Public Health System. This interim report contains no findings and recommendations, but outlines the committee's initial progress.
Following the attacks of September 11, 2001 and the anthrax letters, the ability to detect biological threats as quickly as possible became a top priority. In 2003 the Department of Homeland Security (DHS) introduced the BioWatch program-a federal monitoring system intended to speed detection of specific biological agents that could be released in aerosolized form during a biological attack. The present volume evaluates the costs and merits of both the current BioWatch program and the plans for a new generation of BioWatch devices. BioWatch and Public Health Surveillance also examines infectious disease surveillance through hospitals and public health agencies in the United States, and considers whether BioWatch and traditional infectious disease surveillance are redundant or complementary.
Early Warning for Infectious Disease Outbreak: Theory and Practice is divided into three parts, with the first section introducing basic theory and key technologies of early warning and the basic principles of infectious disease surveillance. The second section introduces the technical details in the process of establishment, operation and usage of CIDARS and Pudong Syndromic Surveillance and the Early Warning System of the Shanghai World Expo. The third part explores the study of early warning technology, collecting some useful exploration in the fields of infectious diseases involving sentinel setting, data analysis, influence factors study, calculation and evaluation of early warning models. Provide insights into the theory and practice of early warning systems that have been evaluated and shown to be effective Presents a synopsis of current state-of-the-art practices and a starting point for the development and evaluation of new methods Covers applied research and complete case studies that focus on local, regional, national and international implementation Includes techniques from other fields, such as intelligence and engineering Explores future innovations in biosurveillance, including advances in analytical methods, modeling and simulation Addresses policy and organizational issues related to the construction of biosurveillance systems
Early detection is essential to the control of emerging, reemerging, and novel infectious diseases, whether naturally occurring or intentionally introduced. Containing the spread of such diseases in a profoundly interconnected world requires active vigilance for signs of an outbreak, rapid recognition of its presence, and diagnosis of its microbial cause, in addition to strategies and resources for an appropriate and efficient response. Although these actions are often viewed in terms of human public health, they also challenge the plant and animal health communities. Surveillance, defined as "the continual scrutiny of all aspects of occurrence and spread of a disease that are pertinent to effective control", involves the "systematic collection, analysis, interpretation, and dissemination of health data." Disease detection and diagnosis is the act of discovering a novel, emerging, or reemerging disease or disease event and identifying its cause. Diagnosis is "the cornerstone of effective disease control and prevention efforts, including surveillance." Disease surveillance and detection relies heavily on the astute individual: the clinician, veterinarian, plant pathologist, farmer, livestock manager, or agricultural extension agent who notices something unusual, atypical, or suspicious and brings this discovery in a timely way to the attention of an appropriate representative of human public health, veterinary medicine, or agriculture. Most developed countries have the ability to detect and diagnose human, animal, and plant diseases. Global Infectious Disease Surveillance and Detection: Assessing the Challenges-Finding Solutions, Workshop Summary is part of a 10 book series and summarizes the recommendations and presentations of the workshop.
As evidenced by the anthrax attacks in 2001, the SARS outbreak in 2003, and the H1N1 influenza pandemic in 2009, a pathogen does not recognize geographic or national boundaries, often leading to devastating consequences. Automated biosurveillance systems have emerged as key solutions for mitigating current and future health-related events. Focusing
H1N1 ("swine flu"), SARS, mad cow disease, and HIV/AIDS are a few examples of zoonotic diseases-diseases transmitted between humans and animals. Zoonotic diseases are a growing concern given multiple factors: their often novel and unpredictable nature, their ability to emerge anywhere and spread rapidly around the globe, and their major economic toll on several disparate industries. Infectious disease surveillance systems are used to detect this threat to human and animal health. By systematically collecting data on the occurrence of infectious diseases in humans and animals, investigators can track the spread of disease and provide an early warning to human and animal health officials, nationally and internationally, for follow-up and response. Unfortunately, and for many reasons, current disease surveillance has been ineffective or untimely in alerting officials to emerging zoonotic diseases. Sustaining Global Surveillance and Response to Emerging Zoonotic Diseases assesses some of the disease surveillance systems around the world, and recommends ways to improve early detection and response. The book presents solutions for improved coordination between human and animal health sectors, and among governments and international organizations. Parties seeking to improve the detection and response to zoonotic diseases-including U.S. government and international health policy makers, researchers, epidemiologists, human health clinicians, and veterinarians-can use this book to help curtail the threat zoonotic diseases pose to economies, societies, and health.
Since the dawn of medical science, people have recognized connections between a change in the weather and the appearance of epidemic disease. With today's technology, some hope that it will be possible to build models for predicting the emergence and spread of many infectious diseases based on climate and weather forecasts. However, separating the effects of climate from other effects presents a tremendous scientific challenge. Can we use climate and weather forecasts to predict infectious disease outbreaks? Can the field of public health advance from "surveillance and response" to "prediction and prevention?" And perhaps the most important question of all: Can we predict how global warming will affect the emergence and transmission of infectious disease agents around the world? Under the Weather evaluates our current understanding of the linkages among climate, ecosystems, and infectious disease; it then goes a step further and outlines the research needed to improve our understanding of these linkages. The book also examines the potential for using climate forecasts and ecological observations to help predict infectious disease outbreaks, identifies the necessary components for an epidemic early warning system, and reviews lessons learned from the use of climate forecasts in other realms of human activity.
This book on Infectious Disease Informatics (IDI) and biosurveillance is intended to provide an integrated view of the current state of the art, identify technical and policy challenges and opportunities, and promote cross-disciplinary research that takes advantage of novel methodology and what we have learned from innovative applications. This book also fills a systemic gap in the literature by emphasizing informatics driven perspectives (e.g., information system design, data standards, computational aspects of biosurveillance algorithms, and system evaluation). Finally, this book attempts to reach policy makers and practitioners through the clear and effective communication of recent research findings in the context of case studies in IDI and biosurveillance, providing “hands-on” in-depth opportunities to practitioners to increase their understanding of value, applicability, and limitations of technical solutions. This book collects the state of the art research and modern perspectives of distinguished individuals and research groups on cutting-edge IDI technical and policy research and its application in biosurveillance. The contributed chapters are grouped into three units. Unit I provides an overview of recent biosurveillance research while highlighting the relevant legal and policy structures in the context of IDI and biosurveillance ongoing activities. It also identifies IDI data sources while addressing information collection, sharing, and dissemination issues as well as ethical considerations. Unit II contains survey chapters on the types of surveillance methods used to analyze IDI data in the context of public health and bioterrorism. Specific computational techniques covered include: text mining, time series analysis, multiple data streams methods, ensembles of surveillance methods, spatial analysis and visualization, social network analysis, and agent-based simulation. Unit III examines IT and decision support for public health event response and bio-defense. Practical lessons learned in developing public health and biosurveillance systems, technology adoption, and syndromic surveillance for large events are discussed. The goal of this book is to provide an understandable interdisciplinary IDI and biosurveillance reference either used as a standalone textbook or reference for students, researchers, and practitioners in public health, veterinary medicine, biostatistics, information systems, computer science, and public administration and policy.
Chronic diseases are common and costly, yet they are also among the most preventable health problems. Comprehensive and accurate disease surveillance systems are needed to implement successful efforts which will reduce the burden of chronic diseases on the U.S. population. A number of sources of surveillance data-including population surveys, cohort studies, disease registries, administrative health data, and vital statistics-contribute critical information about chronic disease. But no central surveillance system provides the information needed to analyze how chronic disease impacts the U.S. population, to identify public health priorities, or to track the progress of preventive efforts. A Nationwide Framework for Surveillance of Cardiovascular and Chronic Lung Diseases outlines a conceptual framework for building a national chronic disease surveillance system focused primarily on cardiovascular and chronic lung diseases. This system should be capable of providing data on disparities in incidence and prevalence of the diseases by race, ethnicity, socioeconomic status, and geographic region, along with data on disease risk factors, clinical care delivery, and functional health outcomes. This coordinated surveillance system is needed to integrate and expand existing information across the multiple levels of decision making in order to generate actionable, timely knowledge for a range of stakeholders at the local, state or regional, and national levels. The recommendations presented in A Nationwide Framework for Surveillance of Cardiovascular and Chronic Lung Diseases focus on data collection, resource allocation, monitoring activities, and implementation. The report also recommends that systems evolve along with new knowledge about emerging risk factors, advancing technologies, and new understanding of the basis for disease. This report will inform decision-making among federal health agencies, especially the Department of Health and Human Services; public health and clinical practitioners; non-governmental organizations; and policy makers, among others.