Download Free Effective Field Theories In Flavour Physics Book in PDF and EPUB Free Download. You can read online Effective Field Theories In Flavour Physics and write the review.

The book constitutes a compact review of the applications of effective field theory methods in flavour physics, with emphasis on heavy quark physics. Some of the relevant applications are discussed to illustrate the method. It covers the full range of theoretical tools related to the application of the effective field theory idea: Starting from the weak interactions as an effective theory derived from the standard model, well-established methods such as heavy quark effective theory, the heavy quark mass expansion and chiral perturbation theory are addressed. Also more recent ideas such as QCD factorization and soft collinear effective theory are outlined. Finally the standard model itself is viewed as an effective theory, allowing a model-independent look at the results of the new physics. The book should be useful for the advanced graduate student as well as for scientists who are interested in the theoretical toolkit used in the context of flavour physics. It is not meant as a complete review of the subject, rather it should be useful as an introduction to the basic ideas.
The book constitutes a compact review of the applications of effective field theory methods in flavour physics, with emphasis on heavy quark physics. Some of the relevant applications are discussed to illustrate the method. It covers the full range of theoretical tools related to the application of the effective field theory idea: Starting from the weak interactions as an effective theory derived from the standard model, well-established methods such as heavy quark effective theory, the heavy quark mass expansion and chiral perturbation theory are addressed. Also more recent ideas such as QCD factorization and soft collinear effective theory are outlined. Finally the standard model itself is viewed as an effective theory, allowing a model-independent look at the results of the new physics. The book should be useful for the advanced graduate student as well as for scientists who are interested in the theoretical toolkit used in the context of flavour physics. It is not meant as a complete review of the subject, rather it should be useful as an introduction to the basic ideas.
This advanced, accessible textbook on effective field theories uses worked examples to bring this important topic to a wider audience.
A detailed and comprehensive exploration of the foundations and fundamentals of effective field theories.
The topic of the CVIII session of the Ecole de Physique des Houches, held in July 2017, was Effective Field Theory in Particle Physics and Cosmology. Effective Field Theory (EFT) is a general method for describing quantum systems with multiple length scales in a tractable fashion. It allows to perform precise calculations in established models (such as the Standard Models of particle physics and cosmology), as well as to concisely parametrise possible effects from physics beyond the Standard Models. The goal of this school was to offer a broad introduction to the foundations and modern applications of Effective Field Theory in many of its incarnations. This is all the more important as there are preciously few textbooks covering the subject, none of them in a complete way. In this book, the lecturers present the concepts in a pedagogical way so that readers can adapt some of the latest developments to their own problems. The chapters cover almost all the lectures given at the school and will serve as an introduction to the topic and as a reference manual to students and researchers.
Effective field theories are a widely used tool in various branches of physics. This book provides a comprehensive discussion of the foundations and fundamentals of effective field theories of quantum chromodynamics (QCD) in the light quark sector with an emphasis on the study of flavour symmetries and their realizations. In this context, different types of effective field theories pertaining to various energy scales are considered and selected applications are devised. It also covers the formulation of effective field theories in a finite volume and its application in the analysis of lattice QCD data. Effective Field Theories is intended for graduate students and researchers in particle physics, hadron physics and nuclear physics. Exercises are included to help the reader deepen their understanding of the topics discussed throughout, with solutions available to lecturers.
This is the first advanced, systematic and comprehensive look at weak decays in the framework of gauge theories. Included is a large spectrum of topics, both theoretical and experimental. In addition to explicit advanced calculations of Feynman diagrams and the study of renormalization group strong interaction effects in weak decays, the book is devoted to the Standard Model Effective Theory, dominating present phenomenology in this field, and to new physics models with the goal of searching for new particles and interactions through quantum fluctuations. This book will benefit theorists, experimental researchers, and Ph.D. students working on flavour physics and weak decays as well as physicists interested in physics beyond the Standard Model. In its concern for the search for new phenomena at short distance scales through the interplay between theory and experiment, this book constitutes a travel guide to physics far beyond the scales explored by the Large Hadron Collider at CERN.
This book covers systematically and in a simple language the mathematical and physical foundations of controlling deterministic and stochastic evolutionary processes in systems with a high degree of complexity. Strong emphasis is placed on concepts, methods and techniques for modelling, assessment and the solution or estimation of control problems in an attempt to understand the large variability of these problems in several branches of physics, chemistry and biology as well as in technology and economics. The main focus of the book is on a clear physical and mathematical understanding of the dynamics and kinetics behind several kinds of control problems and their relation to self-organizing principles in complex systems. The book is a modern introduction and a helpful tool for researchers, engineers as well as post-docs and graduate students interested in an application oriented control theory and related topics.
A detailed overview of the physics of high-energy colliders emphasising the role of QCD.