Download Free Effective Faithful Tropicalizations Associated To Linear Systems On Curves Book in PDF and EPUB Free Download. You can read online Effective Faithful Tropicalizations Associated To Linear Systems On Curves and write the review.

For a connected smooth projective curve X of genus g, global sections of any line bundle L with deg(L) ≥ 2g + 1 give an embedding of the curve into projective space. We consider an analogous statement for a Berkovich skeleton in nonarchimedean geometry: We replace projective space by tropical projective space, and an embedding by a homeomorphism onto its image preserving integral structures (or equivalently, since X is a curve, an isometry), which is called a faithful tropicalization. Let K be an algebraically closed field which is complete with respect to a nontrivial nonarchimedean value. Suppose that X is defined over K and has genus g ≥ 2 and that Γ is a skeleton (that is allowed to have ends) of the analytification Xan of X in the sense of Berkovich. We show that if deg(L) ≥ 3g − 1, then global sections of L give a faithful tropicalization of Γ into tropical projective space. As an application, when Y is a suitable affine curve, we describe the analytification Y an as the limit of tropicalizations of an effectively bounded degree.
View the abstract.
View the abstract.
View the abstract.
View the abstract.
View the abstract.
View the abstract.
View the abstract.
View the abstract.