Download Free Effect Of Transpiration On Hydromagnetic Flow And Heat Transfer Book in PDF and EPUB Free Download. You can read online Effect Of Transpiration On Hydromagnetic Flow And Heat Transfer and write the review.

This book presents a theoretical analysis of several problems in thermal and solutal convections in magneto-hydrodynamic (MHD) flows. It provides a systemic discussion on the development of fluid dynamics, continuum hypothesis, Newton’s law of viscosity, heat transfer, mass transfer, thermal diffusion, diffusion-thermo-MHD, gray and non-gray gases, Fourier’s law of conduction, and Fick’s law of diffusion in such a way that readers with little knowledge in physics will find it easier to understand the contents. Some physical principles, such as those governing fluid motion, fluid temperature, and fluid concentration, are presented in vector form, allowing the corresponding form to be derived in any orthogonal curvilinear coordinate system. Laplace transform technique in closed form is used to obtain exact solutions to unsteady one-dimensional flow problems, an implicit finite difference method of Crank–Nicholson type is used to solve unsteady two-dimensional flow problems, and an asymptotic series expansion method is used to solve the governing equations of the steady three-dimensional flow problem analytically. Flow and transport phenomena are thoroughly treated in each chapter separately. This book emphasizes the influence of an induced magnetic field. The outcomes of the works are graphically depicted so that readers can gain a tangible understanding of the problems. It also includes a list of inverse Laplace transforms (ILTs) for several specific functions, some of which are not found in the existing literature. The ILTs of special functions are given in brief form and can further be utilized as standard formulae in finding those as special cases. Some new special functions are introduced in the book, along with appropriate definitions. As a result, the formulations for velocity, temperature, concentration, skin friction, Nusselt number, and Sherwood number have been appeared in brief and convenient forms that are uncommon in other literature. This book addresses numerous areas of contemporary magneto-fluid dynamics research that have major implications in engineering. It is primarily intended for researchers working in the field of heat and mass transfer in hydromagnetic flows.
Most of the equations governing the problems related to science and engineering are nonlinear in nature. As a result, they are inherently difficult to solve. Analytical solutions are available only for some special cases. For other cases, one has no easy means but to solve the problem must depend on numerical solutions. Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes: Numerical Solutions presents the current theoretical developments of boundary layer theory, a branch of transport phenomena. Also, the book addresses the theoretical developments in the area and presents a number of physical problems that have been solved by analytical or numerical method. It is focused particularly on fluid flow problems governed by nonlinear differential equations. The book is intended for researchers in applied mathematics, physics, mechanics and engineering. - Addresses basic concepts to understand the theoretical framework for the method - Provides examples of nonlinear problems that have been solved through the use of numerical method - Focuses on fluid flow problems governed by nonlinear equations
Most of the problems arising in science and engineering are nonlinear. They are inherently difficult to solve. Traditional analytical approximations are valid only for weakly nonlinear problems, and often break down for problems with strong nonlinearity. This book presents the current theoretical developments and applications of the Keller-box method to nonlinear problems. The first half of the book addresses basic concepts to understand the theoretical framework for the method. In the second half of the book, the authors give a number of examples of coupled nonlinear problems that have been solved by means of the Keller-box method. The particular area of focus is on fluid flow problems governed by nonlinear equation.
At the outset, the author of the book welcomes his supervisor Prof. Prof (Dr.) G. S. Roy who has joined me as coauthors of this text, a credit which would have been given earlier to them as they were helping in a latent way in the evolution of the book for the past five years. Five years have elapsed on the intellectual journey of writing a PhD thesis e-book in title “Hall Effect on the Magnetohydrodynamic Flow of Some Newtonian and Non-Newtonian Conducting Fluids” in subject of physics. As Magnetohydrodynamic Flow is growing at a dazzling pace, this edition has been demanding in a different way. In this 1st edition, the book has been thoroughly described, enlarged and updated with Magnetohydrodynamic Flow. Gratitude is expressed to the students and teachers, both from India and abroad, who have sent in their valuable suggestions which have been given due consideration. We are sincerely thankful to our publisher, Newredmars Education. We are also deeply indebted to my guide Prof. Dr. G. S. Roy for his sustained support of this endeavour from its inception; his wisdom has made all the difference. Healthy criticism and suggestions for further improvement of the book are solicited.
The demand for energy to satisfy the basic needs and services of the population worldwide is increasing as are the economic costs associated with energy production. As such, it is essential to emphasize energy recovery systems to improve heat transfer in thermal processes. Currently, significant research efforts are being conducted to expose criteria and analysis techniques for the design of heat exchange equipment. This book discusses optimization of heat exchangers, heat transfer in novel working fluids, and the experimental and numerical analysis of heat transfer applications.
An investigation was conducted to determine the heat transfer and fluid flow characteristics in porous matrices for transpiration cooling. Governing differential equations were derived and solved using realistic boundary conditions. Parameters governing the resulting temperature and pressure distributions in porous matrices were identified. Geometry, transient, and dissociation effects on temperature and pressure distributions were determined. Fluid flow and heat transfer characteristics in two-phase flows and multilayer matrices were also analyzed. Experimentally, 301 test runs were performed to measure the temperature distribution and pressure drops across the porous matrices using air, nitrogen, helium, and water as collants. Satisfactory agreement between calculated and measured temperature profiles was obtained. Information on permeability of porous matrices was derived. Good correlation was accomplished for viscous permeability as a function of porosity. (Author).
Micro and Nanofluid Convection with Magnetic Field Effects for Heat and Mass Transfer Applications using MATLAB® examines the performance of micro and nanofluids with various physical effects such as magnetic field, slip effects, radiation and heat sources. Heat and mass transfer enhancement techniques are widely used in many applications in the heating and cooling or freezing process to make possible a reduction in weight and size or enhance performance during heat and mass exchanges. The book covers the two categories of flow techniques, active and passive. It discusses various considerations in the engineering sciences in the melting process, polymer industry and in metallurgy. To be more precise, it may be pointed out that many metal surgical developments involve the cooling of continuous strips or filaments by drawing them through a quiescent fluid, and in that process of drawing, these strips are sometimes stretched. In all these cases, the properties of the final product depend, to a great extent, on the rate of cooling by drawing such strips in an electrically conducting fluid subject to a magnetic field and thermal radiation. - Provides information about the governing equations for all three types of flow geometries - Explains micro polar fluid flow modeling - Offers detailed coverage of boundary value problems using MATLAB®
Introduction to nanofluids--their properties, synthesis, characterization, and applications Nanofluids are attracting a great deal of interest with their enormous potential to provide enhanced performance properties, particularly with respect to heat transfer. In response, this text takes you on a complete journey into the science and technology of nanofluids. The authors cover both the chemical and physical methods for synthesizing nanofluids, explaining the techniques for creating a stable suspension of nanoparticles. You get an overview of the existing models and experimental techniques used in studying nanofluids, alongside discussions of the challenges and problems associated with some of these models. Next, the authors set forth and explain the heat transfer applications of nanofluids, including microelectronics, fuel cells, and hybrid-powered engines. You also get an introduction to possible future applications in large-scale cooling and biomedicine. This book is the work of leading pioneers in the field, one of whom holds the first U.S. patent for nanofluids. They have combined their own first-hand knowledge with a thorough review of theliterature. Among the key topics are: * Synthesis of nanofluids, including dispersion techniques and characterization methods * Thermal conductivity and thermo-physical properties * Theoretical models and experimental techniques * Heat transfer applications in microelectronics, fuel cells, and vehicle engines This text is written for researchers in any branch of science and technology, without any prerequisite.It therefore includes some basic information describing conduction, convection, and boiling of nanofluids for those readers who may not have adequate background in these areas. Regardless of your background, you'll learn to develop nanofluids not only as coolants, but also for a host ofnew applications on the horizon.