Download Free Effect Of The Laminar Boundary Layer Development In A Shock Tube On Spectrum Line Reversal Temperature Measurements Book in PDF and EPUB Free Download. You can read online Effect Of The Laminar Boundary Layer Development In A Shock Tube On Spectrum Line Reversal Temperature Measurements and write the review.

A summary is presented of a research program aimed at the improvement of high-temperature strain gages of the electrical resistance type. Potential ceramic and metal components were evaluated and a gage was devised that was based on these evaluations. This gage (NBS 5B) was flexible and easy to install; however, it lacked resistance stability at higher temperatures. In an attempt to minimize this deficiency, ceramic cements were developed that showed greater electrical resistivity than had been previously observed in the range 800 to 1800 degrees Fahrenheit; also, a technique was devised for increasing the resistance to ground by applying a fired-on ceramic coating to the grid of a specifically developed unbacked gage. A study was made of the cause of the erratic response of cemented gages that had not been preheated prior to use. There were strong indications that the erratic response was caused mostly by the rapid decrease in resistance that accompanied structural changes in the cement.
The linearized attenuation theory of NACA Technical Note 3375 is modified in the following manner: (a) an unsteady compressible local skin-friction coefficient is employed rather than the equivalent steady-flow incompressible coefficient; (b) a nonlinear approach is used to permit application of the theory to large attenuations; and (c) transition effects are considered. Curves are presented for predicting attenuation for shock pressure ratios up to 20 and a range of shock-tube Reynolds numbers. Comparison of theory and experimental data for shock wave strengths between 1.5 and 10 over a wide range of Reynolds numbers shows good agreement with the nonlinear theory evaluated for a transition Reynolds nuniber of 2.5 million.