Download Free Effect Of Seismic Loading On Steel Moment Resisting Frames Book in PDF and EPUB Free Download. You can read online Effect Of Seismic Loading On Steel Moment Resisting Frames and write the review.

This report, FEMA-350 - Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings has been developed by the SAC Joint Venture under contract to the Federal Emergency Management Agency (FEMA) to provide organizations engaged in the development of consensus design standards and building code provisions with recommended criteria for the design and construction of new buildings incorporating moment-resisting steel frame construction to resist the effects of earthquakes. It is one of a series of companion publications addressing the issue of the seismic performance of steel moment-frame buildings. The set of companion publications includes: FEMA-350 - Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. This publication provides recommended criteria, supplemental to FEMA-302 - 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, for the design and construction of steel moment-frame buildings and provides alternative performance-based design criteria. FEMA-351 - Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings. This publication provides recommended methods to evaluate the probable performance of existing steel moment-frame buildings in future earthquakes and to retrofit these buildings for improved performance. FEMA-352 - Recommended Postearthquake Evaluation and Repair Criteria for Welded Steel Moment-Frame Buildings. This publication provides recommendations for performing postearthquake inspections to detect damage in steel moment-frame buildings following an earthquake, evaluating the damaged buildings to determine their safety in the postearthquake environment, and repairing damaged buildings. FEMA-353 - Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications. This publication provides recommended specifications for the fabrication and erection of steel moment frames for seismic applications. The recommended design criteria contained in the other companion documents are based on the material and workmanship standards contained in this document, which also includes discussion of the basis for the quality control and quality assurance criteria contained in the recommended specifications. The information contained in these recommended design criteria, hereinafter referred to as Recommended Criteria, is presented in the form of specific design and performance evaluation procedures together with supporting commentary explaining part of the basis for these recommendations.
This research book presents the fundamental work related to the prediction of collapse load for a moment-resisting steel frame (MRSF) subjected to earthquake forces.It demonstrates the extensive work in nonlinear analysis with particular reference to pushover analysis (POA) and incremental dynamic analysis (IDA), and deliberates at length the historical background for each method. More importantly, the book simplifies the collapse prediction process of a structure based on analytical expression. In addition, this book describes the MRSF which was designed according to Eurocode(s). This bookserves as a guide and reference for practitioners and students. Universiti Sains Malaysia, Penerbit Universiti Sains Malaysia
This book is a state-of-the-art report on the ductility of steel structures, containing a comprehensive review of the technical literature available, and presenting the results of the authors' own extensive research activities in this area. Analytical and numerical methods are described, and a wealth of practical information is provided. Ductility of Seismic-Resistant Steel Structures will be of great use to advanced students, researchers, designers and professionals in the field of civil, structural and earthquake engineering.
Providing real world applications for different structural types and seismic characteristics, Seismic Design of Steel Structures combines knowledge of seismic behavior of steel structures with the principles of earthquake engineering. This book focuses on seismic design, and concentrates specifically on seismic-resistant steel structures. Drawing on experience from the Northridge to the Tohoku earthquakes, it combines understanding of the seismic behavior of steel structures with the principles of earthquake engineering. The book focuses on the global as well as local behavior of steel structures and their effective seismic-resistant design. It recognises different types of earthquakes, takes into account the especial danger of fire after earthquake, and proposes new bracing and connecting systems for new seismic resistant steel structures, and also for upgrading existing reinforced concrete structures. Includes the results of the extensive use of the DUCTROCT M computer program, which is used for the evaluation of the seismic available ductility, both monotonic and cyclic, for different types of earthquakes Demonstrates good design principles by highlighting the behavior of seismic-resistant steel structures in many applications from around the world Provides a methodological approach, making a clear distinction between strong and low-to-moderate seismic regions This book serves as a reference for structural engineers involved in seismic design, as well as researchers and graduate students of seismic structural analysis and design.
An unexpected brittle failure of connections and of members occurred during the last earthquakes of Northridge and Kobe. For this reason a heightened awareness developed in the international scientific community, particularly in the earthquake prone countries of the Mediterranean and Eastern Europe, of the urgent need to investigate this topic. The contents of this volume result from a European project dealing with the 'Reliability of moment resistant connections of steel frames in seismic areas' (RECOS), developed between 1997 and 1999 within the INCO-Copernicus joint research projects of the 4th Framework Program. The 30 month project focused on five key areas: *Analysis and syntheses of research results, including code provisos, in relation with the evidence of the Northridge and Kobe earthquakes; *Identification and evaluation through experimental means of the structural performance of beam-to-column connections under cyclic loading; *Setting up of sophisticated models for interpreting the connection response; *Numerical study on the connection influence on the seismic response of steel buildings; *Assessment of new criteria for selecting the behaviour factor for different structural schemes and definition of the corresponding range of validity in relation of the connection typologies.
A book to help you getting acquainted with the seismic design principles & methodology established by the 97 Uniform Building Code that is also reflected in the IBC 2000 code for designing members & seismic connections. The author, a consulting engineer with 30 years of practice, has been Adjunct Professor at California State University Long Beach for several years & conducted ICBO seminars on steel design based on the 97 UBC & AISC LRFD Seismic Provisions, as well as seminars to prepare applicants for P.E. exam. The book uses an actual project to demonstrate how to comply with the provisions of the 97 Uniform Building Code, the latest AISC LRFD Manual of Steel Construction, 2nd Ed. & its Seismic Provisions. The material is presented in a concise, to-the-point manner ready to apply to the project on hand. Useful to civil & structural engineers not yet fully exposed to seismic design as well as those familiar with earthquake design regulations. Supported by structural details & diagrams.
Prepared by the Technical Council on Lifeline Earthquake Engineering of ASCE. This TCLEE Monograph covers the entire range of fire following earthquake (FFE) issues, from historical fires to 20th-century fires in Kobe, San Francisco, Oakland, Berkeley, and Northridge. FFE has the potential of causing catastrophic losses in the United States, Japan, Canada, New Zealand, and other seismically active countries with wood houses. This comprehensive book on FFE and urban conflagrations provides state-of-the-practice insight on unique issues, such as large diameter flex hose applications by fire and water departments. Topics include: History of past fires; Computer modeling of fire spread in the post-earthquake urban environment; Concurrent damage and fire impacts for water, power gas, communication and transportation systems; Examples of reliable water systems built or designed in San Francisco, Vancouver, Berkeley, and Kyoto; Use of large diameter (5 in.) and ultralarge diameter (12 in.) flex hose for fire fighting and water restoration; and Cost-effectiveness of various FFE mitigation strategies, with a detailed benefit-cost model. Water utility engineers, fire fighting professionals, and emergency response planners will benefit from reading this book.
With the embrace of the performance-based seismic design as the state-of-the-art design method, recent emphasis has been placed on eliminating its drawbacks and facilitating its application in practice. This study aims to propose an alternative design method: performance-based analytics-driven seismic design, which is applied to steel moment resisting frame buildings. First, the seismic performance of self-centering (with post-tensioned connections) and conventional moment resisting frames (with reduced-beam section connection) is comparatively assessed. The comparison indicates that the economic benefit for adopting the post-tensioned connection is not significant. Then, an end-to-end computational platform, which automates the seismic design, nonlinear structural model construction, and response simulation (static and dynamic) of steel moment resisting frames is developed. Using this platform, a comprehensive database is developed, which includes 621 special steel moment resisting frames designed in accordance with modern codes and standards and their corresponding nonlinear structural models and seismic responses (i.e., peak story drifts, peak floor accelerations, and residual story drifts). Using this database, the efficacy of mechanics-based, data-driven, and hybrid (combination of mechanics-based and data driven) approaches to estimating the seismic drift demand are evaluated. The evaluation results reveal that the hybrid approach has the best performance whereas the mechanics-based model has the lowest performance. Next, a set of non-parametric and parametric surrogate models are developed for estimating the engineering demand parameter distributions. A comparative assessment of the proposed surrogate models and the simplified analysis method proposed by FEMA P-58 is conducted to demonstrate the superior predictive performance of the former. Finally, the effect of various design variables on the collapse performance of steel moment resisting frames are evaluated. The research findings presented in this study helps to facilitate the application of 2nd performance-based earthquake engineering framework in practice and thus better help to create earthquake-resilient communities.
A state-of-the-art summary of recent developments in the behaviour, analysis and design of seismic resistant steel frames. Much more than a simple background volume, it gives the most recent results which can be used in the near future to improve the codified recommendations for steel structures in seismic zones. It contains new material which cann