Download Free Effect Of Recycled Concrete Aggregates On The Flexural Behavior Of Reinforced Concrete Beams Book in PDF and EPUB Free Download. You can read online Effect Of Recycled Concrete Aggregates On The Flexural Behavior Of Reinforced Concrete Beams and write the review.

Concrete is the most used man-made material in the world since its invention. The widespread use of this material has led to continuous developments such as ultra-high strength concrete and self-compacting concrete. Recycled Aggregate in Concrete: Use of Industrial, Construction and Demolition Waste focuses on the recent development which the use of various types of recycled waste materials as aggregate in the production of various types of concrete. By drawing together information and data from various fields and sources, Recycled Aggregate in Concrete: Use of Industrial, Construction and Demolition Waste provides full coverage of this subject. Divided into two parts, a compilation of varied literature data related to the use of various types of industrial waste as aggregates in concrete is followed by a discussion of the use of construction and demolition waste as aggregate in concrete. The properties of the aggregates and their effect on various concrete properties are presented, and the quantitative procedure to estimate the properties of concrete containing construction and demolition waste as aggregates is explained. Current codes and practices developed in various countries to use construction and demolition waste as aggregates in concrete and issues related to the sustainability of cement and concrete production are also discussed. The comprehensive information presented in Recycled Aggregate in Concrete: Use of Industrial, Construction and Demolition Waste will be helpful to graduate students, researchers and concrete technologists. The collected data will also be an essential reference for practicing engineers who face problems concerning the use of these materials in concrete production.
Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compared with mechanics courses, the basic theories of reinforced concrete structures cannot be solely derived by theoretical analysis. And compared with design courses, this course emphasizes the introduction of basic theories rather than simply being a translation of design specifications. The book will focus on both the theoretical derivations and the engineering practices.
The quality and testing of materials used in construction are covered by reference to the appropriate ASTM standard specifications. Welding of reinforcement is covered by reference to the appropriate AWS standard. Uses of the Code include adoption by reference in general building codes, and earlier editions have been widely used in this manner. The Code is written in a format that allows such reference without change to its language. Therefore, background details or suggestions for carrying out the requirements or intent of the Code portion cannot be included. The Commentary is provided for this purpose. Some of the considerations of the committee in developing the Code portion are discussed within the Commentary, with emphasis given to the explanation of new or revised provisions. Much of the research data referenced in preparing the Code is cited for the user desiring to study individual questions in greater detail. Other documents that provide suggestions for carrying out the requirements of the Code are also cited.
One area for sustainable engineering is the efficient use of recycled aggregates obtained from construction and demolition and also as by-products derived from industrial waste that optimises economic and environmental benefits. For the past five decades, studies on the effect of coarse recycled aggregates (RCA) on properties of concrete have been going on, and in fact, none of them reported that good quality coarse RCA, from the mechanical point of view, is unsustainable for structural use. However, according to the limits stated in BS EN 8500 part 2 (2006), at least 87% of the coarse RCA shall be obtained by crushing old hardened concrete debris. As it was impossible to obtain such good quality aggregates from existing plants, coarse recycled aggregate (RA*) containing 60% of coarse RCA, 10% asphalt, 10% brick, 15% unbound aggregate, and 5% fines and other materials was used in this study. The main aim of this study was to determine and compare the structural properties of natural aggregate concrete (NAC) and recycled aggregate concrete (RAC) of equal compressive strength by using different percentage of course RA* and to investigate the suitability of coarse RA* for use in steel-reinforced concrete elements. The study was carried out in three phases. Phase 1 involved the characterisation of the aggregates through a testing regime which include physical and mechanical assessments to study their possible application in concrete production. It was found that the aggregates were suitable to produce normal concrete. For the Phase 2, the effect of the coarse RA* content (up to 100%) on the main properties of concrete was investigated. The results showed that there was a gradual decrease in slump (up to 24%), compressive strength (up to 21%), flexural strength (up to 10%) and modulus of elasticity (up to 30%) as the percentage of coarse RA* increased up to 100%. Thereafter, NA concrete and RA concrete with the same slump and compressive strength made with 100% Portland cement (PC) only and also with a combination of 70% PC and 30% pulverised fuel ash (PFA), were produced. Flexural strength, modulus of elasticity, drying shrinkage, and creep were determined and compared. The compressive strength of RA concretes was increased by lowering the w/c ratio through reducing the free water content. For the Phase 3, pull-out test was carried out using 16mm and 20mm reformed bars embedded in concrete cylinders made with equal strength NA and RA concretes to investigate the bonding strength. It was discovered that the coarse RA* content had no significant effect on the values of pull-out force. Then, for studying flexural properties (cracking load, ultimate load, deflection, strain in rebar, strain in concrete, and pattern of cracks) of steel-reinforced recycled concrete (RRC) beams, two types of beam sections (under-reinforced and over-reinforced) were made with equal strength NA and RA concretes and tested. It was discovered that the difference in ultimate load values was negligible. Although higher deflections were observed for RA beams, the deflections were still within acceptable limits. Overall, it was concluded that, the flexural behaviour of steel-RRC beams made with equal strength concrete is not considerably affected by the presence of coarse RA*, as well as PFA, and the differences were minor with no practical significance. However, due to effect of coarse RA* on the shrinkage and creep strains, their use in structural elements prone to such deformations may require some special considerations.