Download Free Effect Of Mixture Component Characteristics On Property And Performance Of Superpave Mixtures Book in PDF and EPUB Free Download. You can read online Effect Of Mixture Component Characteristics On Property And Performance Of Superpave Mixtures and write the review.

Relationships able to predict initial fracture energy and creep rate, which are the properties known to govern the change in material property over time and are also required for performance model predictions, were developed in this study. Furthermore, conceptual relationships were identified to describe changes in these properties over time (aging) by including the effect of the non-healable permanent damage related to load and moisture. This can serve as the foundation for further development of improved models to predict mixture properties as a function of age in the field based on additional field data and laboratory studies using more advanced laboratory conditioning procedures. The verified relationships will also serve to provide reliable inputs for prediction of service life using pavement performance prediction models.
Laboratory creep and fatigue testing was performed on five Superpave surface hot-mix asphalt mixtures placed at the Virginia Smart Road. Differences in creep and fatigue response attributable to production and compaction methods were investigated. In addition, changes in creep response resulting from differences in specimen size were evaluated. Further, an evaluation of the effects of loading frequency, presence of rest periods, and specimen location within the pavement on fatigue life was conducted. Creep compliance values were determined using viscoelastic-based calculations, and time-temperature superposition was used to generate mastercurves. Reported creep compliance response models from the literature were found inadequate for accurately describing the creep compliance mastercurves generated during this study. Differences in creep response between specimens of different sizes were found to be due to specimen and test variability, rather than size. An evaluation of the effects of laboratory and plant production and laboratory and field compaction was inconclusive as material variability appeared greater than production or compaction variability. Simple regression models were found to be satisfactory for use in the development of prediction models for fatigue, although test data are necessary for calibration to particular mixture types. No relationships were found between fatigue model coefficients and volumetric properties of the mixtures tested because of the limited range of volumetric properties. Variability in volumetric properties between the mixtures produced at the plant and those produced to match the job mix formula did not significantly influence the predicted laboratory fatigue performance. Laboratory fatigue lives were similar between the laboratory-compacted fatigue specimens and specimens cut from the pavement; differences observed in performance were attributable to different air void contents. Predicted fatigue life was found to be statistically independent of the frequency of the applied loads or presence of rest periods for the mixtures, frequencies, and rest periods considered in this study. Minimal differences were observed between fatigue life predictions for plant-produced, field-compacted specimens cut from different locations in the pavement. This study contributes to the understanding of the factors involved in creep and fatigue performance of asphalt mixtures. The mixture responses characterized by this study are related to the rutting and fatigue performance of asphalt pavements. The choice of appropriate asphalt materials to resist rutting and fatigue deterioration will result in reduced maintenance needs and longer service lives for pavements.
Thirteen papers presented at the conference on [title], held in Phoenix, Arizona, December, 1994, discuss the products of the strategic highway research program, the Superpave method of mix design, and test methods for fatigue cracking and permanent deformation. Lacks an index. Annotation c. by Book
"Performance-Related Material Properties of Asphalt Mixture Components (Second Edition)" is a comprehensive compilation of 14 research papers that explore the latest advancements in pavement engineering. This Reprint focuses on the performance-related properties of asphalt mixtures and pavements, offering valuable insights into the factors that influence durability, resilience, and overall pavement quality. The included studies cover a broad range of topics, such as the mechanical behavior of asphalt under different environmental conditions, the effects of innovative materials and modifiers, advanced modeling techniques, and the impact of recycling processes on pavement performance. Together, these papers provide a holistic view of the current state of pavement research, making this Reprint an essential resource for engineers, researchers, and professionals in the field.