Download Free Effect Of Low Temperature Oxidation On The Hydrogen In Coal And The Change In Weight Of Coal On Drying Classic Reprint Book in PDF and EPUB Free Download. You can read online Effect Of Low Temperature Oxidation On The Hydrogen In Coal And The Change In Weight Of Coal On Drying Classic Reprint and write the review.

Low-Rank Coals for Power Generation, Fuel and Chemical Production provides a thorough introduction to lignite (brown coal) and subbituminous coals and explores how they can be used efficiently and economically in place of hard coal. The book examines the undesirable characteristics of low-quality coals, such as high moisture content, low calorific value, and aggressive ash characteristics, and the resulting refinements to standard technologies and practices required for successful combustion, gasification, and pyrolysis.The first part of this book provides a comprehensive and systematic review of the properties of low-rank coals and corresponding preparation methods, such as drying, cleaning, and upgrading. Power generation from low-rank coals is the focus of Part 2, with chapter topics ranging from high efficiency pulverized coal combustion and circulatingfluidized bed combustion to emerging areas such as chemical looping and oxyfuel combustion. The final contributions address the important subjects of coal-to-liquids,polygeneration and coke production using low-rank coals, as well as the critical issue of carbon capture and storage.This book is a valuable resource for power generation engineers and researchers seeking to maximize the opportunities provided by these cheaper coal feedstocks for efficient and environmentally compatible power generation. - Presents the most in-depth treatment of low-rank coals available - Addresses both power generation and fuel production - Includes coverage that spans pulverized coal combustion and emerging technologies, such as CFBC, UCG, CLC, and oxyfuel combustion
The first strand involves a critical overview of the design of experimental methods used for examining the thermal behaviour of solid fuels [pyrolysis, liquefaction and gasification], while the second will emphasise chemical structures and molecular mass distributions of coal derived tars, extracts and pitches, petroleum-derived asphaltenes, and biomass derived heavy hydrocarbon liquids.Two major, interdependent strands in the study of fossil and renewable fuel utilisation are focused on within this text:(i) Thermal characterisation of solid fuels including various ranks of coals, biomass and waste, and, (ii) The analytical characterisation of heavy hydrocarbon liquids, covering coal, petroleum and biomass derived heavy fractions.Two major, interdependent strands in the study of fossil and renewable fuel utilisation are focused on within this text: (i) Thermal characterisation of solid fuels including various ranks of coals, biomass and waste, and, (ii) The analytical characterisation of heavy hydrocarbon liquids, covering coal, petroleum and biomass derived heavy fractions.
This is the 2003 revision of the 1985 book Burning Wood and Coal. It includes updated information on building codes, newer heating systems and components, installation and safety issues, cutting wood with a chainsaw, and much more.
Skyrocketing energy costs have spurred renewed interest in coal gasification. Currently available information on this subject needs to be updated, however, and focused on specific coals and end products. For example, carbon capture and sequestration, previously given little attention, now has a prominent role in coal conversion processes.This book approaches coal gasification and related technologies from a process engineering point of view, with topics chosen to aid the process engineer who is interested in a complete, coal-to-products system. It provides a perspective for engineers and scientists who analyze and improve components of coal conversion processes.The first topic describes the nature and availability of coal. Next, the fundamentals of gasification are described, followed by a description of gasification technologies and gas cleaning processes. The conversion of syngas to electricity, fuels and chemicals is then discussed. Finally, process economics are covered. Emphasis is given to the selection of gasification technology based on the type of coal fed to the gasifier and desired end product: E.g., lower temperature gasifiers produce substantial quantities of methane, which is undesirable in an ammonia synthesis feed. This book also reviews gasification kinetics which is informed by recent papers and process design studies by the US Department of Energy and other groups, and also largely ignored by other gasification books.• Approaches coal gasification and related technologies from a process engineering point of view, providing a perspective for engineers and scientists who analyze and improve components of coal conversion processes • Describes the fundamentals of gasification, gasification technologies, and gas cleaning processes • Emphasizes the importance of the coal types fed to the gasifier and desired end products • Covers gasification kinetics, which was largely ignored by other gasification books - Provides a perspective for engineers and scientists who analyze and improve components of the coal conversion processes - Describes the fundamentals of gasification, gasification technologies, and gas cleaning processes - Covers gasification kinetics, which was largely ignored by other gasification books
The Science of Victorian Brown Coal provides extensive information on Victorian brown coal, which is a major fossil fuel resource by any standard and constitutes about 97% of Victoria's recoverable energy reserves. Energy from brown coal has been the mainstay of the Victorian economy, providing low-cost electricity to the state grid, briquettes as a fuel for industry and town gas prior to the discovery of natural gas. Because of the unique properties of the coal, it has been necessary to develop an in-depth scientific knowledge of the coal and its behavior, as well as innovative technologies for its effective utilization. The economic benefit brown coal has provided to Victoria is demonstrated throughout the chapters. This book aims to provide the springboard for further research and lead to a new era in the development of value-added products and the more efficient utilization of this major resource. This text is a useful reference for students or individuals conducting research on fossil fuel energy, specifically on brown coals.
Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants provides researchers in academia and industry with an essential overview of the stronger high-temperature materials required for key process components, such as membrane wall tubes, high-pressure steam piping and headers, superheater tubes, forged rotors, cast components, and bolting and blading for steam turbines in USC power plants. Advanced materials for future advanced ultra-supercritical power plants, such as superalloys, new martensitic and austenitic steels, are also addressed. Chapters on international research directions complete the volume. The transition from conventional subcritical to supercritical thermal power plants greatly increased power generation efficiency. Now the introductions of the ultra-supercritical (USC) and, in the near future, advanced ultra-supercritical (A-USC) designs are further efforts to reduce fossil fuel consumption in power plants and the associated carbon dioxide emissions. The higher operating temperatures and pressures found in these new plant types, however, necessitate the use of advanced materials. - Provides researchers in academia and industry with an authoritative and systematic overview of the stronger high-temperature materials required for both ultra-supercritical and advanced ultra-supercritical power plants - Covers materials for critical components in ultra-supercritical power plants, such as boilers, rotors, and turbine blades - Addresses advanced materials for future advanced ultra-supercritical power plants, such as superalloys, new martensitic and austenitic steels - Includes chapters on technologies for welding technologies
This is a review of 190 years of literature on copper and its alloys. It integrates information on pigments, corrosion and minerals, and discusses environmental conditions, conservation methods, ancient and historical technologies.
Filling the need for new and improved energy sources is an area where societal effects of science and technology will surely increase. The editors and authors have attempted in this volume to present the most current work on the science and technology of coal and coal utilization. Serious disagreement exists on several key issues such as carbon dioxide release and acid rain. At the same time, however, coal is the world's most abundant fossil fuel and will have to be used to supply the world's energy needs for the next several decades. The 1979 National Research Council Report, "En ergy in Transition: 1985-2010," has estimated that the United States alone may go from a 1979 coal consumption of 14 QUADS per annum (approximately 750 million tons per year) to approximately 40-50 QUADS per annum (approximately 2 billion tons per year) by the year 2010. If this scale of coal utilization is to become a reality, a significant level of research and development will be necessary to establish advanced process technologies and to improve related areas such as materials and instrumentation. The editors hope that this volume will allow a technically educated person to become aware of the several aspects of coal utilization, from characterization of coal itself to the processes of coal utilization. B. R. Cooper and W. A. Ellingson March, 1983 vii Contents 1. THE SCIENCE AND TECHNOLOGY OF COAL AND COAL UTILIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Bernard R. Cooper and William A. Ellingson 2. COAL CHARACTERIZATION. . . . . . . . . . . . . . . . . . . . . . . . . . . .