Download Free Editing And Imputation For Economic Survey Data Book in PDF and EPUB Free Download. You can read online Editing And Imputation For Economic Survey Data and write the review.

A practical, one-stop reference on the theory and applications of statistical data editing and imputation techniques Collected survey data are vulnerable to error. In particular, the data collection stage is a potential source of errors and missing values. As a result, the important role of statistical data editing, and the amount of resources involved, has motivated considerable research efforts to enhance the efficiency and effectiveness of this process. Handbook of Statistical Data Editing and Imputation equips readers with the essential statistical procedures for detecting and correcting inconsistencies and filling in missing values with estimates. The authors supply an easily accessible treatment of the existing methodology in this field, featuring an overview of common errors encountered in practice and techniques for resolving these issues. The book begins with an overview of methods and strategies for statistical data editing and imputation. Subsequent chapters provide detailed treatment of the central theoretical methods and modern applications, with topics of coverage including: Localization of errors in continuous data, with an outline of selective editing strategies, automatic editing for systematic and random errors, and other relevant state-of-the-art methods Extensions of automatic editing to categorical data and integer data The basic framework for imputation, with a breakdown of key methods and models and a comparison of imputation with the weighting approach to correct for missing values More advanced imputation methods, including imputation under edit restraints Throughout the book, the treatment of each topic is presented in a uniform fashion. Following an introduction, each chapter presents the key theories and formulas underlying the topic and then illustrates common applications. The discussion concludes with a summary of the main concepts and a real-world example that incorporates realistic data along with professional insight into common challenges and best practices. Handbook of Statistical Data Editing and Imputation is an essential reference for survey researchers working in the fields of business, economics, government, and the social sciences who gather, analyze, and draw results from data. It is also a suitable supplement for courses on survey methods at the upper-undergraduate and graduate levels.
This book focuses on quantitative survey methodology, data collection and cleaning methods. Providing starting tools for using and analyzing a file once a survey has been conducted, it addresses fields as diverse as advanced weighting, editing, and imputation, which are not well-covered in corresponding survey books. Moreover, it presents numerous empirical examples from the author's extensive research experience, particularly real data sets from multinational surveys.
The U.S. Census Bureau maintains an important portfolio of economic statistics programs, including quinquennial economic censuses, annual economic surveys, and quarterly and monthly indicator surveys. Government, corporate, and academic users rely on the data to understand the complexity and dynamism of the U.S. economy. Historically, the Bureau's economic statistics programs developed sector by sector (e.g., separate surveys of manufacturing, retail trade, and wholesale trade), and they continue to operate largely independently. Consequently, inconsistencies in questionnaire content, sample and survey design, and survey operations make the data not only more difficult to use, but also more costly to collect and process and more burdensome to the business community than they could be. This report reviews the Census Bureau's annual economic surveys. Specifically, it examines the design, operations, and products of 11 surveys and makes recommendations to enable them to better answer questions about the evolving economy.
A practical, one-stop reference on the theory and applications of statistical data editing and imputation techniques Collected survey data are vulnerable to error. In particular, the data collection stage is a potential source of errors and missing values. As a result, the important role of statistical data editing, and the amount of resources involved, has motivated considerable research efforts to enhance the efficiency and effectiveness of this process. Handbook of Statistical Data Editing and Imputation equips readers with the essential statistical procedures for detecting and correcting inconsistencies and filling in missing values with estimates. The authors supply an easily accessible treatment of the existing methodology in this field, featuring an overview of common errors encountered in practice and techniques for resolving these issues. The book begins with an overview of methods and strategies for statistical data editing and imputation. Subsequent chapters provide detailed treatment of the central theoretical methods and modern applications, with topics of coverage including: Localization of errors in continuous data, with an outline of selective editing strategies, automatic editing for systematic and random errors, and other relevant state-of-the-art methods Extensions of automatic editing to categorical data and integer data The basic framework for imputation, with a breakdown of key methods and models and a comparison of imputation with the weighting approach to correct for missing values More advanced imputation methods, including imputation under edit restraints Throughout the book, the treatment of each topic is presented in a uniform fashion. Following an introduction, each chapter presents the key theories and formulas underlying the topic and then illustrates common applications. The discussion concludes with a summary of the main concepts and a real-world example that incorporates realistic data along with professional insight into common challenges and best practices. Handbook of Statistical Data Editing and Imputation is an essential reference for survey researchers working in the fields of business, economics, government, and the social sciences who gather, analyze, and draw results from data. It is also a suitable supplement for courses on survey methods at the upper-undergraduate and graduate levels.
This book offers a practical understanding of issues involved in improving data quality through editing, imputation, and record linkage. The first part of the book deals with methods and models, focusing on the Fellegi-Holt edit-imputation model, the Little-Rubin multiple-imputation scheme, and the Fellegi-Sunter record linkage model. The second part presents case studies in which these techniques are applied in a variety of areas, including mortgage guarantee insurance, medical, biomedical, highway safety, and social insurance as well as the construction of list frames and administrative lists. This book offers a mixture of practical advice, mathematical rigor, management insight and philosophy.
An in-depth look at current issues, new research findings, and interdisciplinary exchange in survey methodology and processing Survey Measurement and Process Quality extends the marriage of traditional survey issues and continuous quality improvement further than any other contemporary volume. It documents the current state of the field, reports new research findings, and promotes interdisciplinary exchange in questionnaire design, data collection, data processing, quality assessment, and effects of errors on estimation and analysis. The book's five sections discuss a broad range of issues and topics in each of five major areas, including * Questionnaire design--conceptualization, design of rating scales for effective measurement, self-administered questionnaires, and more * Data collection--new technology, interviewer effects, interview mode, children as respondents * Post-survey processing and operations--modeling of classification operations, coding based on such systems, editing, integrating processes * Quality assessment and control--total quality management, developing current best methods, service quality, quality efforts across organizations * Effects of misclassification on estimation, analysis, and interpretation--misclassification and other measurement errors, new variance estimators that account for measurement error, estimators of nonsampling error components in interview surveys Survey Measurement and Process Quality is an indispensable resource for survey practitioners and managers as well as an excellent supplemental text for undergraduate and graduate courses and special seminars.
ADMINISTRATIVE RECORDS FOR SURVEY METHODOLOGY Addresses the international use of administrative records for large-scale surveys, censuses, and other statistical purposes Administrative Records for Survey Methodology is a comprehensive guide to improving the quality, cost-efficiency, and interpretability of surveys and censuses using administrative data research. Contributions from a team of internationally-recognized experts provide practical approaches for integrating administrative data in statistical surveys, and discuss the methodological issues—including concerns of privacy, confidentiality, and legality—involved in collecting and analyzing administrative records. Numerous real-world examples highlight technological and statistical innovations, helping readers gain a better understanding of both fundamental methods and advanced techniques for controlling data quality reducing total survey error. Divided into four sections, the first describes the basics of administrative records research and addresses disclosure limitation and confidentiality protection in linked data. Section two focuses on data quality and linking methodology, covering topics such as quality evaluation, measuring and controlling for non-consent bias, and cleaning and using administrative lists. The third section examines the use of administrative records in surveys and includes case studies of the Swedish register-based census and the administrative records applications used for the US 2020 Census. The book’s final section discusses combining administrative and survey data to improve income measurement, enhancing health surveys with data linkage, and other uses of administrative data in evidence-based policymaking. This state-of-the-art resource: Discusses important administrative data issues and suggests how administrative data can be integrated with more traditional surveys Describes practical uses of administrative records for evidence-driven decisions in both public and private sectors Emphasizes using interdisciplinary methodology and linking administrative records with other data sources Explores techniques to leverage administrative data to improve the survey frame, reduce nonresponse follow-up, assess coverage error, measure linkage non-consent bias, and perform small area estimation. Administrative Records for Survey Methodology is an indispensable reference and guide for statistical researchers and methodologists in academia, industry, and government, particularly census bureaus and national statistical offices, and an ideal supplemental text for undergraduate and graduate courses in data science, survey methodology, data collection, and data analysis methods.
The Handbook on Economic Tendency Surveys provides best practices and harmonized principles on how to conduct economic tendency survey from sample selection, questionnaire design, survey questions, survey execution, to data processing and dissemination. It also provides examples of uses of these surveys, for example, for composite tendency indicators. These surveys provide qualitative information that cannot be collected using other quantitative statistical methods. They also serve as an integral part of an early warning system because they provide information about the occurrence and timing of upturns and downturns of the economy.
The Census Bureau has recently begun releasing official statistics that measure the movements of firms in and out of business and workers in and out of jobs. The economic analyses in Producer Dynamics exploit this newly available data on establishments, firms, and workers, to address issues in industrial organization, labor, growth, macroeconomics, and international trade. This innovative volume brings together a group of renowned economists to probe topics such as firm dynamics across countries; patterns of employment dynamics; firm dynamics in nonmanufacturing industries such as retail, health services, and agriculture; employer-employee turnover from matched worker/firm data sets; and turnover in international markets. Producer Dynamics will serve as an invaluable reference to economists and policy makers seeking to understand the links between firms and workers, and the sources of economic dynamics, in the age of globalization.
Federal government statistics provide critical information to the country and serve a key role in a democracy. For decades, sample surveys with instruments carefully designed for particular data needs have been one of the primary methods for collecting data for federal statistics. However, the costs of conducting such surveys have been increasing while response rates have been declining, and many surveys are not able to fulfill growing demands for more timely information and for more detailed information at state and local levels. Innovations in Federal Statistics examines the opportunities and risks of using government administrative and private sector data sources to foster a paradigm shift in federal statistical programs that would combine diverse data sources in a secure manner to enhance federal statistics. This first publication of a two-part series discusses the challenges faced by the federal statistical system and the foundational elements needed for a new paradigm.