Download Free Eddy Current Approximation Of Maxwell Equations Book in PDF and EPUB Free Download. You can read online Eddy Current Approximation Of Maxwell Equations and write the review.

This book deals with the mathematical analysis and the numerical approximation of eddy current problems in the time-harmonic case. It takes into account all the most used formulations, placing the problem in a rigorous functional framework.
This book deals with the mathematical analysis and the numerical approximation of eddy current problems in the time-harmonic case. It takes into account all the most used formulations, placing the problem in a rigorous functional framework.
This conference was held in Santiago de Compostela, Spain, July 10-14, 2000. This volume contains papers presented at the conference covering a broad range of topics in theoretical and applied wave propagation in the general areas of acoustics, electromagnetism, and elasticity. Both direct and inverse problems are well represented. This volume, along with the three previous ones, presents a state-of-the-art primer for research in wave propagation. The conference is conducted by the Institut National de Recherche en Informatique et en Automatique with the cooperation of SIAM.
This volume collects longer articles on the analysis and numerics of Maxwell’s equations. The topics include functional analytic and Hilbert space methods, compact embeddings, solution theories and asymptotics, electromagnetostatics, time-harmonic Maxwell’s equations, time-dependent Maxwell’s equations, eddy current approximations, scattering and radiation problems, inverse problems, finite element methods, boundary element methods, and isogeometric analysis.
Presenting topics that have not previously been contained in a single volume, this book offers an up-to-date review of computational methods in electromagnetism, with a focus on recent results in the numerical simulation of real-life electromagnetic problems and on theoretical results that are useful in devising and analyzing approximation algorithms. Based on four courses delivered in Cetraro in June 2014, the material covered includes the spatial discretization of Maxwell’s equations in a bounded domain, the numerical approximation of the eddy current model in harmonic regime, the time domain integral equation method (with an emphasis on the electric-field integral equation) and an overview of qualitative methods for inverse electromagnetic scattering problems. Assuming some knowledge of the variational formulation of PDEs and of finite element/boundary element methods, the book is suitable for PhD students and researchers interested in numerical approximation of partial differential equations and scientific computing.
This book presents a comprehensive mathematical approach for solving stochastic magnetic field problems. It discusses variability in material properties and geometry, with an emphasis on the preservation of structural physical and mathematical properties. It especially addresses uncertainties in the computer simulation of magnetic fields originating from the manufacturing process. Uncertainties are quantified by approximating a stochastic reformulation of the governing partial differential equation, demonstrating how statistics of physical quantities of interest, such as Fourier harmonics in accelerator magnets, can be used to achieve robust designs. The book covers a number of key methods and results such as: a stochastic model of the geometry and material properties of magnetic devices based on measurement data; a detailed description of numerical algorithms based on sensitivities or on a higher-order collocation; an analysis of convergence and efficiency; and the application of the developed model and algorithms to uncertainty quantification in the complex magnet systems used in particle accelerators.
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
This monograph addresses fundamental aspects of mathematical modeling and numerical solution methods of electromagnetic problems involving low frequencies, i.e. magnetostatic and eddy current problems which are rarely presented in the applied mathematics literature. In the first part, the authors introduce the mathematical models in a realistic context in view of their use for industrial applications. Several geometric configurations of electric conductors leading to different mathematical models are carefully derived and analyzed, and numerical methods for the solution of the obtained problems are given. Related issues such as convergence of the approximations and error estimates are discussed. The second part of the monograph presents various coupled problems that involve eddy current or magnetostatic problems, in particular magneto-hydrodynamic problems and magnetic shaping problems concerning the melt flow of electrically conducting metals, induction heating processes, inductively coupled plasmas and ferromagnetic screening modeling. The presentation of each model comes with numerical illustration from industrial applications.
Understand the theory of eddy currents with this essential reference Eddy currents are electrical current loops produced when a conductor passes through a magnetic field, or is otherwise subject to a change in magnetic field direction. These currents play a significant role in many industrial processes and areas of electrical engineering. Their properties and applications are therefore a subject of significant interest for electrical engineers and other professionals. Eddy Currents: Theory, Modelling and Applications offers a comprehensive reference on eddy currents in theory and practice. It begins with an introduction to the underlying theory of eddy currents, before proceeding to both closed-form and numerical solutions, and finally describing current and future applications. The result is an essential tool for anyone whose work requires an understanding of these ubiquitous currents. Eddy Currents readers will also find: Professional insights from an author team with decades of combined experience in research and industry Detailed treatment of methods including finite difference, finite element, and integral equation techniques Over 100 computer-generated figures to illustrate key points Eddy Currents is a must-have reference for researchers and industry professionals in electrical engineering and related fields.
This volume encompasses prototypical, innovative and emerging examples and benchmarks of Differential-Algebraic Equations (DAEs) and their applications, such as electrical networks, chemical reactors, multibody systems, and multiphysics models, to name but a few. Each article begins with an exposition of modelling, explaining whether the model is prototypical and for which applications it is used. This is followed by a mathematical analysis, and if appropriate, a discussion of the numerical aspects including simulation. Additionally, benchmark examples are included throughout the text. Mathematicians, engineers, and other scientists, working in both academia and industry either on differential-algebraic equations and systems or on problems where the tools and insight provided by differential-algebraic equations could be useful, would find this book resourceful.