Download Free Ecophysiology Of Salinity Tolerance In Three Halophytic Turfgrasses Book in PDF and EPUB Free Download. You can read online Ecophysiology Of Salinity Tolerance In Three Halophytic Turfgrasses and write the review.

The halophytes are highly specialized plants, which have greater tolerance to salt. They can germinate, grow and reproduce successfully in saline areas which would cause the death of regular plants. Most halophytic species are found in salt marsh systems along seashores or around landlocked inland lakes and flat plains with high evaporation. The halophytes play very significant role in the saline areas specially in the coast by overcoming the salinity in different ways, viz. with regulating mechanisms in which excess salts are excreted and with out regulating mechanism, which may include succulents or cumulative types. Besides that they protect coast from erosion and cyclones, provide feeding ground and nursery for fish, shrimps and birds. Halophytes get increasing attention today because of the steady increase of the salinity in irrigation systems in the arid and semi-arid regions where the increasing population reaches the limits of freshwater availability. In many countries, halophytes have been successfully grown on saline wasteland to provide animal fodder and have the potential for rehabilitation and even reclamation of these sites. The value of certain salt-tolerant grass species has been recognized by their incorporation in pasture improvement programs in many salt affected regions throughout the world. There have been recent advances in selecting species with high biomass and protein levels in combination with their ability to survive a wide range of environmental conditions, including salinity.
A multibillion dollar industry that has tripled in the last ten years, turfgrass management plays an important role in landscaping, golf courses, and other sports surfaces. Proper management and cultural practices are crucial for the performance of these versatile grasses, creating a demand among scientists, researchers, and industry professionals
Halophytes are those plant species that can tolerate high salt concentrations. There are diversified species of halophytes suited for growth in various saline regions around the world, e.g. coastal saline soil, soils of mangrove forests, wetlands, marshlands, lands of arid and semiarid regions, and agricultural fields. These plants can be grown in soil and water containing high salt concentrations and unsuitable for conventional crops, and can be good sources of food, fuel, fodder, fiber, essential oils, and medicine. Moreover, halophytes can be exploited as significant and major plant species for the desalination and restoration of saline soils, as well as phytoremediation. This book highlights recent advances in exploring the unique features of halophytes and their potential uses in our changing environment.
Sustainable development is the key for the survival in 21st century. The natural resources are finite and cannot be used with impunity because we are the custodian of these resources and have responsibility to pass these to the next generation. This monumental task requires several major commitments and most important of them is to arrest population explosion which has already reached seven billion. Natural resources like air to breath, food to eat, and water to drink, and fossil fuel to maintain this life style are being overexploited. Unrestrained consuming culture will accelerate undesired situation. This situation will have more dire consequences in resource limited ecosystems like dry lands. Given the severe scarcity of water, ever increasing population and soil salinization out of the box solutions for the provision of food and clean energy is required to spare meager fresh water resources for conventional agriculture. This volume contains a number of articles dealing with halophyte ecology, bio-geography, ecophysiology, hyper-saline soils, biofuels, biosaline agriculture, biosaline landscaping, climate change mitigation, and biodiversity. It also contains the communication of innovative ideas, such as the research into floating mangroves, seagrass terraces, as well as a World Halophyte Garden containing all known salt-tolerant plant species. It is hoped that the information provided will not only advance vegetation science, but that it will truly generate more interdisciplinarity, networking, awareness, and inspire farmers, and agricultural and landscaping stakeholders to seriously engage in halophyte cash crop production in coastal hyper-saline areas.
Since the publication of the third edition of the Handbook of Plant and Crop Stress, continuous discoveries in the fields of plant and crop environmental stresses and their effects on plants and crops have resulted in the compilation of a large volume of the latest discoveries. Following its predecessors, this fourth edition offers a unique and comprehensive collection of topics in the fields of plant and crop stress. This new edition contains more than 80% new material, and the remaining 20% has been updated and revised substantially. This volume presents 10 comprehensive sections that include information on soil salinity and sodicity problems; tolerance mechanisms and stressful conditions; plant/crop responses; plant/crop responses under pollution and heavy metal; plant/crop responses under biotic stress; genetic factors and plant/crop genomics under stress conditions; plant/crop breeding under stress conditions; empirical investigations; improving tolerance; and beneficial aspects of stressors. Features: Provides exhaustive coverage written by an international panel of experts in the field of agriculture, particularly in plant/crop stress areas Contains 40 new chapters and 10 extensively revised and expanded chapters Includes three new sections on plant breeding, stress exerted to weeds by plants, and beneficial aspects of stress on plants/crops Numerous case studies With contributions from 100 scientists and experts from 20 countries, this Handbook provides a comprehensive resource for research and for university courses, covering soil salinity/sodicity issues and plant/crop physiological responses under environmental stress conditions ranging from cellular aspects to whole plants. The content can be used to plan, implement, and evaluate strategies to mitigate plant/crop stress problems. This new edition includes numerous tables, figures, and illustrations to facilitate comprehension of the material as well as thousands of index words to further increase accessibility to the desired information.
Agriculture is certainly the most important food supplier while it globally accounts for more than 70% of water used and contributes significantly to water pollution. Irrigated agriculture is facing rising competition worldwide for access to reliable, low cost, and high-quality water resources. However, irrigation as the major tool and determinant of affecting agricultural productivity and environmental resources plays a critical role in food security and environment sustainability. Innovative irrigation technologies and practices may enhance agricultural water efficiency and production, in the meantime decrease the water demand and quality issues. I am very pleased to invite you to submit manuscripts in agricultural irrigation which assess current challenges and offer improvement approaches and opportunities for future irrigation.
Continuous discoveries in plant and crop physiology have resulted in an abundance of new information since the publication of the third edition of the Handbook of Plant and Crop Physiology. Following its predecessors, the fourth edition of this well-regarded handbook offers a unique, comprehensive, and complete collection of topics in the field of plant and crop physiology. Divided into eleven sections, for easy access of information, this edition contains more than 90 percent new material, substantial revisions, and two new sections. The handbook covers the physiology of plant and crop growth and development, cellular and molecular aspects, plant genetics and production processes. The book presents findings on plant and crop growth in response to climatic changes, and considers the potential for plants and crops adaptation, exploring the biotechnological aspects of plant and crop improvement. This content is used to plan, implement, and evaluate strategies for increasing plant growth and crop yield. Readers benefit from numerous tables, figures, case studies and illustrations, as well as thousands of index words, all of which increase the accessibility of the information contained in this important handbook. New to the Edition: Contains 37 new chapters and 13 extensively revised and expanded chapters from the third edition of this book. Includes new or modified sections on soil-plant-water-nutrients-microorganisms physiological relations; and on plant growth regulators, both promoters and inhibitors. Additional new and modified chapters cover the physiological responses of lower plants and vascular plants and crops to metal-based nanoparticles and agrichemicals; and the growth responses of plants and crops to climate change and environmental stresses. With contributions from 95 scientists from 20 countries, this book provides a comprehensive resource for research and for university courses, covering plant and crop physiological responses under normal and stressful conditions ranging from cellular aspects to whole plants.
Soil salinity is a key abiotic-stress and poses serious threats to crop yields and quality of produce. Owing to the underlying complexity, conventional breeding programs have met with limited success. Even genetic engineering approaches, via transferring/overexpressing a single ‘direct action gene’ per event did not yield optimal results. Nevertheless, the biotechnological advents in last decade coupled with the availability of genomic sequences of major crops and model plants have opened new vistas for understanding salinity-responses and improving salinity tolerance in important glycophytic crops. Our goal is to summarize these findings for those who wish to understand and target the molecular mechanisms for producing salt-tolerant and high-yielding crops. Through this 2-volume book series, we critically assess the potential venues for imparting salt stress tolerance to major crops in the post-genomic era. Accordingly, perspectives on improving crop salinity tolerance by targeting the sensory, ion-transport and signaling mechanisms are presented here in volume 1. Volume 2 will focus on the potency of post-genomic era tools that include RNAi, genomic intervention, genome editing and systems biology approaches for producing salt tolerant crops.
This book presents the state-of-the-art in plant ecophysiology. With a particular focus on adaptation to a changing environment, it discusses ecophysiology and adaptive mechanisms of plants under climate change. Over the centuries, the incidence of various abiotic stresses such as salinity, drought, extreme temperatures, atmospheric pollution, metal toxicity due to climate change have regularly affected plants and, and some estimates suggest that environmental stresses may reduce the crop yield by up to 70%. This in turn adversely affects the food security. As sessile organisms, plants are frequently exposed to various environmental adversities. As such, both plant physiology and plant ecophysiology begin with the study of responses to the environment. Provides essential insights, this book can be used for courses such as Plant Physiology, Environmental Science, Crop Production and Agricultural Botany. Volume 2 provides up-to-date information on the impact of climate change on plants, the general consequences and plant responses to various environmental stresses.
Crops experience an assortment of environmental stresses which include abiotic viz., drought, water logging, salinity, extremes of temperature, high variability in radiation, subtle but perceptible changes in atmospheric gases and biotic viz., insects, birds, other pests, weeds, pathogens (viruses and other microbes). The ability to tolerate or adapt and overwinter by effectively countering these stresses is a very multifaceted phenomenon. In addition, the inability to do so which renders the crops susceptible is again the result of various exogenous and endogenous interactions in the ecosystem. Both biotic and abiotic stresses occur at various stages of plant development and frequently more than one stress concurrently affects the crop. Stresses result in both universal and definite effects on plant growth and development. One of the imposing tasks for the crop researchers globally is to distinguish and to diminish effects of these stress factors on the performance of crop plants, especially with respect to yield and quality of harvested products. This is of special significance in view of the impending climate change, with complex consequences for economically profitable and ecologically and environmentally sound global agriculture. The challenge at the hands of the crop scientist in such a scenario is to promote a competitive and multifunctional agriculture, leading to the production of highly nourishing, healthy and secure food and animal feed as well as raw materials for a wide variety of industrial applications. In order to successfully meet this challenge researchers have to understand the various aspects of these stresses in view of the current development from molecules to ecosystems. The book will focus on broad research areas in relation to these stresses which are in the forefront in contemporary crop stress research.