Download Free Economics And Yields Of Energy Plantations Book in PDF and EPUB Free Download. You can read online Economics And Yields Of Energy Plantations and write the review.

Study to determine the factors affecting the cost of energy conversion feedstocks produced in short rotation intensive culture (SRIC) plantations and those influencing biomass yield, as well as the inter-relationships between them; to present estimates of potential biomass yields and their associated economics; and to identify gaps in the knowledge of the economics and yields of biomass production and their inter-relationships. Information was obtained from the literature dealing with the SRIC and from agricultural data from various regions of the country and internationally.
Energies is open to submissions for a Special Issue on “Renewable Energy Production from Energy Crops and Agricultural Residues”. Biomass represents an important source of renewable and sustainable energy production. Its increasing consumption is mainly related to the increase in global energy demand and fossil fuel prices, but also to a lower environmental impact compared to non-renewable fuels. These factors take RED II directives into consideration. In the past, forestry interventions were the main supply source of biomass, but in recent decades two others sources have entered the international scene. These are dedicated energy crops and agricultural residues, which are important sources of biomass for biofuel and bioenergy. Below, we consider four main value chains: • Oil crops: Oil production from non-food oilseed crops (such as camelina, Crambe, safflower, castor, cuphea, cardoon, etc.), oil extraction, and oil utilization for fuel production. • Lignocellulosic crops: Biomass production from perennial grasses (miscanthus, giant reed, switchgrass, reed canary grass, etc.), woody crops (willow, poplar, Robinia, eucalyptus, etc.), and agricultural residues (pruning, maize cob, maize stalks, wheat chaff, sugar cane straw, etc.), considering two main transformation systems: 1. Electricity/heat production 2. Second-generation ethanol production • Carbohydrate crops (cereals, sweet sorghum, sugar beets, sugar cane, etc.) for ethanol production. • Fermentable crops (maize, barley, triticale, Sudan grass, sorghum, etc.) and agricultural residues (chaff, maize stalks and cob, fruit and vegetable waste, etc.) for production of biogas and/or biomethane.
The petroleum age began about 150 years ago. Easily available energy has s- ported major advances in agriculture, industry, transportation, and indeed many diverse activities valued by humans. Now world petroleum and natural gas s- plies have peaked and their supplies will slowly decline over the next 40–50 years until depleted. Although small amounts of petroleum and natural gas will remain underground, it will be energetically and economically impossible to extract. In the United States, coal supplies could be available for as long as 40–50 years, depending on how rapidly coal is utilized as a replacement for petroleum and natural gas. Having been comfortable with the security provided by fossil energy, especially petroleum and natural gas, we appear to be slow to recognize the energy crisis in the U. S. and world. Serious energy conservation and research on viable renewable - ergy technologies are needed. Several renewable energy technologies already exist, but sound research is needed to improve their effectiveness and economics. Most of the renewable energy technologies are in uenced by geographic location and face problems of intermittent energy supply and storage. Most renewable technologies require extensive land; a few researchers have even suggested that one-half of all land biomass could be harvested in order to supply the U. S. with 30% of its liquid fuel! Some optimistic investigations of renewable energy have failed to recognize that only 0. 1% of the solar energy is captured annually in the U. S.