Download Free Economic And Applied Geology Book in PDF and EPUB Free Download. You can read online Economic And Applied Geology and write the review.

This book, first published in 1986, is an excellent introduction to the main topics of economic and applied geology for undergraduate students of geology, geophysics, mining geology and civil engineering.
Humanity’s ever-increasing hunger for mineral raw materials, caused by a growing global population and ever increasing standards of living, has resulted in economic geology becoming a subject of urgent importance. This book provides a broad panorama of mineral deposits, covering their origin and geological characteristics, the principles of the search for ores and minerals, and the investigation of newly found deposits. Practical and environmental issues that arise during the life cycle of a mine and after its closure are addressed, with an emphasis on sustainable and "green" mining. The central scientific theme of the book is to place the extraordinary variability of mineral deposits in the frame of fundamental geological processes. The book is written for earth science students and practicing geologists worldwide. Professionals in administration, resource development, mining, mine reclamation, metallurgy, and mineral economics will also find the text valuable. Economic Geology is a fully revised translation of the the fifth edition of the German language text Mineralische und Energie-Rohstoffe. Additional resources for this book can be found at: www.wiley.com/go/pohl/geology. The author's website can be found at: http://www.walter-pohl.com.
This book includes a careful selection of significant contributions from international experts that were presented at the 6th AIGA Conference “Applied Geology: Approaches to Future Resource Management” that was held in the Courmayeur, Aosta Valley, Italy, from 27 - 29 June 2018. The following 7 areas are the main themes covered in this volume: · Applied Geology · Hydrogeology · Geological Exploration (underground) · Slope Instability, · Natural Hazards, Risk Assessment and Management, · Geo-resources and Sustainable Development · Application of Remote Sensing and Geographical Information Systems (GIS) The authors, from academia, research and industry present the latest state of the practice, new technologies, innovative methods and sustainable management in the field of Applied and Environmental Geology. This carefully edited work will be of value to academia, professionals, scientists and decision makers.
This book provides a detailed overview of the operational principles of modern mining geology, which are presented as a good mix of theory and practice, allowing use by a broad range of specialists, from students to lecturers and experienced geologists. The book includes comprehensive descriptions of mining geology techniques, including conventional methods and new approaches. The attributes presented in the book can be used as a reference and as a guide by mining industry specialists developing mining projects and for optimizing mining geology procedures. Applications of the methods are explained using case studies and are facilitated by the computer scripts added to the book as Electronic Supplementary Material.
The Encyclopedia of Applied Geology is an international compendium of engineering geology topics prepared by experts from many countries. The volume contains more than eighty main entries in alphabetical order, dealing with hydrology, rock structure monitoring and soil mechanics in addition to engineering geology. Special topics focus on earth science information and sources, electrokinetics, forensic geology, geocryology, nuclear plant siting, photogrammetry, tunnels and tunnelling, urban geomorphology and well data systems.
This vivid introduction to economic geology not only describes the most important deposit types, but also the processes involved in their formation. Magmatic, hydrothermal and sedimentary processes as well as weathering and alteration are explained in the framework of plate tectonics and the history of the Earth. The chapter about fossil fuels includes unconventional deposits and the much-debated fracking. Other topics covered are exploration, mining and economic aspects like commodity prices.
The extraordinary growth of the computer and semiconductor industries and the increasing consumption of indium in these technologies in recent years have placed major constraints on current and future reserves of this metal. In the past, geoscientists have noticed the occurrence of indium in a large variety of ore de posits and detailed geochemical and mineralogical work is available for a few ex amples. However, despite the current technological interest, there is no compre hensive textbook that deals with all aspects of indium mineralization and economics. The present study attempts to develop a general metallogenic concept for indium in identifying the essential enrichment processes and their economic significance. The study 'Indium Geology, Mineralogy, and Economics' was commissioned and funded by the German Federal Institute for Geosciences and Natural Re sources (BGR Hannover) and is a contribution to the research program 'BGR 2000 - Raw Materials with Short Lifetime Reserves'. This program focuses on raw materials with known reserves confined to the next 20-25 years at static de mand. The future availability of reserves is usually estimated by dividing the known reserves by the current annual consumption. In fact, lifetimes of reserves are inappropriate measures because they depend on many parameters and there fore represent a "snapshot" of a dynamic system. In order to provide a sustainable use of raw materials with short lifetime reserves, a significantly higher amount of innovation is needed compared to raw materials with long lifetime reserves.
Mineral deposits have supplied useful or valuable material for human consumption long before they became objects of scientific curiosity or commercial exploitation. In fact, the earliest human interest in rocks was probably because of the easily accessible, useful (e. g. , red pigment in the form of earthy hematite) or valuable (e. g. , native gold and gemstones) materials they contained at places. In modem times, the study of mineral deposits has evolved into an applied science employing detailed field observations, sophisticated laboratory techniques for additional information, and computer modeling to build complex hypotheses. Understanding concepts that would someday help geologists to find new mineral deposits or exploit the known ones more efficiently have always been, and will continue to be, at the core of any course on mineral deposits, but it is a fascinating subject in its own right, even for students who do not intend to be professional economic geologists. I believe that a course on mineral deposits should be designed as a "capstone course" that illustrates a comprehensive application of concepts from many other disciplines in geology (mineralogy, stratigraphy and sedimentation, structure and tectonics, petrology, geochemistry, paleontology, geomorphology, etc. ). This book is intended as a text for such an introductory course in economic geology, primarily for senior undergraduate and graduate students in colleges and universities. It should also serve as a useful information resource for professional economic geologists.
This book is a companion to “Natural Gas Hydrate in Oceanic and Permafrost Environments” (Max, 2000, 2003), which is the first book on gas hydrate in this series. Although other gases can naturally form clathrate hydrates (referred to after as ‘hydrate’), we are concerned here only with hydrocarbon gases that form hydrates. The most important of these natural gases is methane. Whereas the first book is a general introduction to the subject of natural gas hydrate, this book focuses on the geology and geochemical controls of gas hydrate development and on gas extraction from naturally occurring hydrocarbon hydrates. This is the first broad treatment of gas hydrate as a natural resource within an economic geological framework. This book is written mainly to stand alone for brevity and to minimize duplication. Information in Max (2000; 2003) should also be consulted for completeness. Hydrate is a type of clathrate (Sloan, 1998) that is formed from a cage structure of water molecules in which gas molecules occupying void sites within the cages stabilize the structure through van der Waals or hydrogen bonding.