Download Free Econometric Analysis Of Discrete Data Handout Book in PDF and EPUB Free Download. You can read online Econometric Analysis Of Discrete Data Handout and write the review.

The thirteen papers in "Structural Analysis of Discrete Data" are previously unpublished major research contributions solicited by the editors. They have been specifically prepared to fulfill the two-fold purpose of the volume, first to provide the econometrics student with an overview of the present extent of the subject and to delineate the boundaries of current research, both in terms of methodology and applications. "Coordinated publication of important findings" should, as the editors state, "lower the cost of entry into the field and speed dissemination of recent research into the graduate econometrics classroom."A second purpose of the volume is to communicate results largely reported in the econometrics literature to a wider community of researchers to whom they are directly relevant, including applied econometricians, statisticians in the area of discrete multivariate analysis, specialists in biometrics, psychometrics, and sociometrics, and analysts in various applied fields such as finance, marketing, and transportation.The papers are grouped into four sections: "Statistical Analysis of Discrete Probability Models, " with papers by the editors and by Steven Cosslett; "Dynamic Discrete Probability Models, " consisting of two contributions by James Heckman; "Structural Discrete Probability Models Derived from Theories of Choice, " with papers by Daniel McFadden, Gregory Fischer and Daniel Nagin, Steven Lerman and Charles Manski, and Moshe Ben-Akiva and Thawat Watanatada; and "Simultaneous Systems Models with Discrete Endogenous Variables, " with contributions by Lung-Fei Lee, Jerry Hausman and David Wise, Dale Poirier, Peter Schmidt, and Robert Avery.Among the applications treated are income maintenance experiments, physician behavior, consumer credit, and intra-urban location and transportation.
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth
Discrete Choice Analysis presents these results in such a way that they are fully accessible to the range of students and professionals who are involved in modelling demand and consumer behavior in general or specifically in transportation - whether from the point of view of the design of transit systems, urban and transport economics, public policy, operations research, or systems management and planning. The methods of discrete choice analysis and their applications in the modelling of transportation systems constitute a comparatively new field that has largely evolved over the past 15 years. Since its inception, however, the field has developed rapidly, and this is the first text and reference work to cover the material systematically, bringing together the scattered and often inaccessible results for graduate students and professionals. Discrete Choice Analysis presents these results in such a way that they are fully accessible to the range of students and professionals who are involved in modelling demand and consumer behavior in general or specifically in transportation - whether from the point of view of the design of transit systems, urban and transport economics, public policy, operations research, or systems management and planning. The introductory chapter presents the background of discrete choice analysis and context of transportation demand forecasting. Subsequent chapters cover, among other topics, the theories of individual choice behavior, binary and multinomial choice models, aggregate forecasting techniques, estimation methods, tests used in the process of model development, sampling theory, the nested-logit model, and systems of models. Discrete Choice Analysis is ninth in the MIT Press Series in Transportation Studies, edited by Marvin Manheim.
The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.
A fully updated second edition of this popular introduction to applied choice analysis, written for graduate students, researchers, professionals and consultants.
Economic Models for Industrial Organization focuses on the specification and estimation of econometric models for research in industrial organization. In recent decades, empirical work in industrial organization has moved towards dynamic and equilibrium models, involving econometric methods which have features distinct from those used in other areas of applied economics. These lecture notes, aimed for a first or second-year PhD course, motivate and explain these econometric methods, starting from simple models and building to models with the complexity observed in typical research papers. The covered topics include discrete-choice demand analysis, models of dynamic behavior and dynamic games, multiple equilibria in entry games and partial identification, and auction models.
The complexity, diversity, and random nature of transportation problems necessitates a broad analytical toolbox. Describing tools commonly used in the field, Statistical and Econometric Methods for Transportation Data Analysis, Second Edition provides an understanding of a broad range of analytical tools required to solve transportation problems. It includes a wide breadth of examples and case studies covering applications in various aspects of transportation planning, engineering, safety, and economics. After a solid refresher on statistical fundamentals, the book focuses on continuous dependent variable models and count and discrete dependent variable models. Along with an entirely new section on other statistical methods, this edition offers a wealth of new material. New to the Second Edition A subsection on Tobit and censored regressions An explicit treatment of frequency domain time series analysis, including Fourier and wavelets analysis methods New chapter that presents logistic regression commonly used to model binary outcomes New chapter on ordered probability models New chapters on random-parameter models and Bayesian statistical modeling New examples and data sets Each chapter clearly presents fundamental concepts and principles and includes numerous references for those seeking additional technical details and applications. To reinforce a practical understanding of the modeling techniques, the data sets used in the text are offered on the book’s CRC Press web page. PowerPoint and Word presentations for each chapter are also available for download.
Table of contents
A comprehensive introduction to the statistical and econometric methods for analyzing high-frequency financial data High-frequency trading is an algorithm-based computerized trading practice that allows firms to trade stocks in milliseconds. Over the last fifteen years, the use of statistical and econometric methods for analyzing high-frequency financial data has grown exponentially. This growth has been driven by the increasing availability of such data, the technological advancements that make high-frequency trading strategies possible, and the need of practitioners to analyze these data. This comprehensive book introduces readers to these emerging methods and tools of analysis. Yacine Aït-Sahalia and Jean Jacod cover the mathematical foundations of stochastic processes, describe the primary characteristics of high-frequency financial data, and present the asymptotic concepts that their analysis relies on. Aït-Sahalia and Jacod also deal with estimation of the volatility portion of the model, including methods that are robust to market microstructure noise, and address estimation and testing questions involving the jump part of the model. As they demonstrate, the practical importance and relevance of jumps in financial data are universally recognized, but only recently have econometric methods become available to rigorously analyze jump processes. Aït-Sahalia and Jacod approach high-frequency econometrics with a distinct focus on the financial side of matters while maintaining technical rigor, which makes this book invaluable to researchers and practitioners alike.