Download Free Econometric Analysis Of Discrete Choice Book in PDF and EPUB Free Download. You can read online Econometric Analysis Of Discrete Choice and write the review.

This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Discrete Choice Analysis presents these results in such a way that they are fully accessible to the range of students and professionals who are involved in modelling demand and consumer behavior in general or specifically in transportation - whether from the point of view of the design of transit systems, urban and transport economics, public policy, operations research, or systems management and planning. The methods of discrete choice analysis and their applications in the modelling of transportation systems constitute a comparatively new field that has largely evolved over the past 15 years. Since its inception, however, the field has developed rapidly, and this is the first text and reference work to cover the material systematically, bringing together the scattered and often inaccessible results for graduate students and professionals. Discrete Choice Analysis presents these results in such a way that they are fully accessible to the range of students and professionals who are involved in modelling demand and consumer behavior in general or specifically in transportation - whether from the point of view of the design of transit systems, urban and transport economics, public policy, operations research, or systems management and planning. The introductory chapter presents the background of discrete choice analysis and context of transportation demand forecasting. Subsequent chapters cover, among other topics, the theories of individual choice behavior, binary and multinomial choice models, aggregate forecasting techniques, estimation methods, tests used in the process of model development, sampling theory, the nested-logit model, and systems of models. Discrete Choice Analysis is ninth in the MIT Press Series in Transportation Studies, edited by Marvin Manheim.
Table of contents
The availability of microdata has increased rapidly over the last decades, and standard statistical and econometric software packages for data analysis include ever more sophisticated modeling options. The goal of this book is to familiarize readers with a wide range of commonly used models, and thereby to enable them to become critical consumers of current empirical research, and to conduct their own empirical analyses. The focus of the book is on regression-type models in the context of large cross-section samples. In microdata applications, dependent variables often are qualitative and discrete, while in other cases, the sample is not randomly drawn from the population of interest and the dependent variable is censored or truncated. Hence, models and methods are required that go beyond the standard linear regression model and ordinary least squares. Maximum li- lihood estimation of conditional probability models and marginal probability e?ects are introduced here as the unifying principle for modeling, estimating and interpreting microdata relationships. We consider the limitation to m- imum likelihood sensible, from a pedagogical point of view if the book is to be used in a semester-long advanced undergraduate or graduate course, and from a practical point of view because maximum likelihood estimation is used in the overwhelming majority of current microdata research. In order to introduce and explain the models and methods, we refer to a number of illustrative applications. The main examples include the deter- nants of individual fertility, the intergenerational transmission of secondary schoolchoices,andthewageelasticityoffemalelaborsupply.
It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.
The thirteen papers in "Structural Analysis of Discrete Data" are previously unpublished major research contributions solicited by the editors. They have been specifically prepared to fulfill the two-fold purpose of the volume, first to provide the econometrics student with an overview of the present extent of the subject and to delineate the boundaries of current research, both in terms of methodology and applications. "Coordinated publication of important findings" should, as the editors state, "lower the cost of entry into the field and speed dissemination of recent research into the graduate econometrics classroom."A second purpose of the volume is to communicate results largely reported in the econometrics literature to a wider community of researchers to whom they are directly relevant, including applied econometricians, statisticians in the area of discrete multivariate analysis, specialists in biometrics, psychometrics, and sociometrics, and analysts in various applied fields such as finance, marketing, and transportation.The papers are grouped into four sections: "Statistical Analysis of Discrete Probability Models, " with papers by the editors and by Steven Cosslett; "Dynamic Discrete Probability Models, " consisting of two contributions by James Heckman; "Structural Discrete Probability Models Derived from Theories of Choice, " with papers by Daniel McFadden, Gregory Fischer and Daniel Nagin, Steven Lerman and Charles Manski, and Moshe Ben-Akiva and Thawat Watanatada; and "Simultaneous Systems Models with Discrete Endogenous Variables, " with contributions by Lung-Fei Lee, Jerry Hausman and David Wise, Dale Poirier, Peter Schmidt, and Robert Avery.Among the applications treated are income maintenance experiments, physician behavior, consumer credit, and intra-urban location and transportation.
A fully updated second edition of this popular introduction to applied choice analysis, written for graduate students, researchers, professionals and consultants.
Simulation methods are revolutionizing the practice of applied economic analysis. In this book, leading researchers from around the world discuss interpretation issues, similarities and differences across alternative models, and propose practical solutions for the choice of the model and programming. Case studies show the practical use and the results brought forth by the different methods.
This tutorial presents a hands-on introduction to a new discrete choice modeling approach based on the behavioral notion of regret-minimization. This so-called Random Regret Minimization-approach (RRM) forms a counterpart of the Random Utility Maximization-approach (RUM) to discrete choice modeling, which has for decades dominated the field of choice modeling and adjacent fields such as transportation, marketing and environmental economics. Being as parsimonious as conventional RUM-models and compatible with popular software packages, the RRM-approach provides an alternative and appealing account of choice behavior. Rather than providing highly technical discussions as usually encountered in scholarly journals, this tutorial aims to allow readers to explore the RRM-approach and its potential and limitations hands-on and based on a detailed discussion of examples. This tutorial is written for students, scholars and practitioners who have a basic background in choice modeling in general and RUM-modeling in particular. It has been taken care of that all concepts and results should be clear to readers that do not have an advanced knowledge of econometrics.
This work takes a fresh and contemporary look at the growing interest in the development and application of discrete choice experiments (DCEs) within the field of health economics. The book comprises chapters by highly regarded academics with experience of applying DCEs in the area of health. Thus the book is relevant to post-graduate students and applied researchers with an interest in the use of DCEs for valuing health and health care and has international appeal.