Download Free Ecological Studies And Reviews Book in PDF and EPUB Free Download. You can read online Ecological Studies And Reviews and write the review.

A plethora of different theories, models, and concepts make up the field of community ecology. Amid this vast body of work, is it possible to build one general theory of ecological communities? What other scientific areas might serve as a guiding framework? As it turns out, the core focus of community ecology—understanding patterns of diversity and composition of biological variants across space and time—is shared by evolutionary biology and its very coherent conceptual framework, population genetics theory. The Theory of Ecological Communities takes this as a starting point to pull together community ecology's various perspectives into a more unified whole. Mark Vellend builds a theory of ecological communities based on four overarching processes: selection among species, drift, dispersal, and speciation. These are analogues of the four central processes in population genetics theory—selection within species, drift, gene flow, and mutation—and together they subsume almost all of the many dozens of more specific models built to describe the dynamics of communities of interacting species. The result is a theory that allows the effects of many low-level processes, such as competition, facilitation, predation, disturbance, stress, succession, colonization, and local extinction to be understood as the underpinnings of high-level processes with widely applicable consequences for ecological communities. Reframing the numerous existing ideas in community ecology, The Theory of Ecological Communities provides a new way for thinking about biological composition and diversity.
Provides a framework for understanding methodological issues and assists with the effective definition and planning of research.
Metacommunity ecology links smaller-scale processes that have been the provenance of population and community ecology—such as birth-death processes, species interactions, selection, and stochasticity—with larger-scale issues such as dispersal and habitat heterogeneity. Until now, the field has focused on evaluating the relative importance of distinct processes, with niche-based environmental sorting on one side and neutral-based ecological drift and dispersal limitation on the other. This book moves beyond these artificial categorizations, showing how environmental sorting, dispersal, ecological drift, and other processes influence metacommunity structure simultaneously. Mathew Leibold and Jonathan Chase argue that the relative importance of these processes depends on the characteristics of the organisms, the strengths and types of their interactions, the degree of habitat heterogeneity, the rates of dispersal, and the scale at which the system is observed. Using this synthetic perspective, they explore metacommunity patterns in time and space, including patterns of coexistence, distribution, and diversity. Leibold and Chase demonstrate how these processes and patterns are altered by micro- and macroevolution, traits and phylogenetic relationships, and food web interactions. They then use this scale-explicit perspective to illustrate how metacommunity processes are essential for understanding macroecological and biogeographical patterns as well as ecosystem-level processes. Moving seamlessly across scales and subdisciplines, Metacommunity Ecology is an invaluable reference, one that offers a more integrated approach to ecological patterns and processes.
To provide useful and meaningful information, long-term ecological programs need to implement solid and efficient statistical approaches for collecting and analyzing data. This volume provides rigorous guidance on quantitative issues in monitoring, with contributions from world experts in the field. These experts have extensive experience in teaching fundamental and advanced ideas and methods to natural resource managers, scientists and students. The chapters present a range of tools and approaches, including detailed coverage of variance component estimation and quantitative selection among alternative designs; spatially balanced sampling; sampling strategies integrating design- and model-based approaches; and advanced analytical approaches such as hierarchical and structural equation modelling. Making these tools more accessible to ecologists and other monitoring practitioners across numerous disciplines, this is a valuable resource for any professional whose work deals with ecological monitoring. Supplementary example software code is available online at www.cambridge.org/9780521191548.
Ecological research and the way that ecologists use statistics continues to change rapidly. This second edition of the best-selling Design and Analysis of Ecological Experiments leads these trends with an update of this now-standard reference book, with a discussion of the latest developments in experimental ecology and statistical practice. The goal of this volume is to encourage the correct use of some of the more well known statistical techniques and to make some of the less well known but potentially very useful techniques available. Chapters from the first edition have been substantially revised and new chapters have been added. Readers are introduced to statistical techniques that may be unfamiliar to many ecologists, including power analysis, logistic regression, randomization tests and empirical Bayesian analysis. In addition, a strong foundation is laid in more established statistical techniques in ecology including exploratory data analysis, spatial statistics, path analysis and meta-analysis. Each technique is presented in the context of resolving an ecological issue. Anyone from graduate students to established research ecologists will find a great deal of new practical and useful information in this current edition.
Although interest in ecological restoration has grown rapidly in recent years, restoration efforts have been highly empirical and have therefore been of only marginal interest to theoretical ecologists concerned with the structure and dynamics of communities. The ability to reassemble a community or ecosystem and to make it function properly actually represents a critical test of ecological understanding in the most fundamental sense. It is this idea of restoration as a technique - and even a paradigm - for ecological studies, leading in turn to improved restoration methods, that is the subject of this book.
Environmental research has driven landmark improvements that led to the protection of human and ecosystem health. Recognizing the value of knowledge generated by environmental research and the ingenuity within academic and nonprofit institutions, the US Environmental Protection Agency (EPA) created a program known as Science to Achieve Results, or STAR, in 1995. STAR is EPA's primary competitive extramural grants program. A Review of the Environmental Protection Agency's Science to Achieve Results Research Program assesses the program's scientific merit, public benefits, and overall contributions in the context of other relevant research and recommends ways to enhance those aspects of the program. This report also considers the conclusions and recommendations of a prior National Research Council review of the STAR program (2003), the STAR program's research priorities in light of the nation's environmental challenges, and the effects of recent STAR funding trends on obtaining scientific information needed to protect public health and the environment.
"Covers a broad range of subjects that undergraduates in the discipline should be familiar and comfortable with upon graduation. From chapters on the scientific method and fundamental research concepts, to experimental design, sampling and statistical analysis, the text offers an excellent introduction to the key concepts of geographical research. The content is applicable for students at the beginning of their studies right through to planning and conducting dissertations. The book has also been of particular support in designing my level 1 and 2 tutorials which cover similar ground to several of the chapters." - Joseph Mallalieu, School of Geography, Leeds University "Montello and Sutton is one of the best texts I′ve used in seminars on research methodology. The text offers a clear balance of quantitative vs. qualitative and physical vs. human which I′ve found particularly valuable. The chapters on research ethics, scientific communication, information technologies and data visualization are excellent." - Kenneth E. Foote, Department of Geography, University of Colorado at Boulder This is a broad and integrative introduction to the conduct and interpretation of scientific research, covering both geography and environmental studies. Written for undergraduate and postgraduate students, it: Explains both the conceptual and the technical aspects of research, as well as all phases of the research process Combines approaches in physical geography and environmental science, human geography and human-environment relations, and geographic and environmental information techniques (such as GIS, cartography, and remote sensing) Combines natural and social scientific approaches common to subjects in geography and environmental studies Includes case studies of actual research projects to demonstrate the breadth of approaches taken It will be core reading for students studying scientific research methods in geography, environmental studies and related disciplines such as planning and earth science.