Download Free Ecological Modeling In Risk Assessment Book in PDF and EPUB Free Download. You can read online Ecological Modeling In Risk Assessment and write the review.

Toxic chemicals can exert effects on all levels of the biological hierarchy, from cells to organs to organisms to populations to entire ecosystems. However, most risk assessment models express their results in terms of effects on individual organisms, without corresponding information on how populations, groups of species, or whole ecosystems may respond to chemical stressors. Ecological Modeling in Risk Assessment: Chemical Effects on Populations, Ecosystems, and Landscapes takes a new approach by compiling and evaluating models that can be used in assessing risk at the population, ecosystem, and landscape levels. The authors give an overview of the current process of ecological risk assessment for toxic chemicals and of how modeling of populations, ecosystems, and landscapes could improve the status quo. They present a classification of ecological models and explain the differences between population, ecosystem, landscape, and toxicity-extrapolation models. The authors describe the model evaluation process and define evaluation criteria. Finally, the results of the model evaluations are presented in a concise format with recommendations on modeling approaches to use now and develop further. The authors present and evaluate various models on the basis of their realism and complexity, prediction of relevant assessment endpoints, treatment of uncertainty, regulatory acceptance, resource efficiency, and other criteria. They provide models that will improve the ecological relevance of risk assessments and make data collection more cost-effective. Ecological Modeling in Risk Assessment serves as a reference for selecting and applying the best models when performing a risk assessment.
Environmental Modeling and Health Risk Analysis (ACTS/RISK) The purpose of this book is to provide the reader with an integrated perspective on several ?elds. First, it discusses the ?elds of environmental modeling in general and multimedia (the term “multimedia” is used throughout the text to indicate that environmental transformation and transport processes are discussed in association with three environmental media: air, groundwater and surface water pathways) environmental transformation and transport processes in particular; it also provides a detailed description of numerous mechanistic models that are used in these ?elds. Second, this book presents a review of the topics of exposure and health risk analysis. The Analytical Contaminant Transport Analysis System (ACTS) and Health RISK Analysis (RISK) software tools are an integral part of the book and provide computational platforms for all the models discussed herein. The most recent versions of these two software tools can be downloaded from the publisher’s web site. The author recommends registering the software on the web download page so that users can receive updates about newer versions of the software.
Most ecological risk assessments consider the risk to individual organisms or organism-level attributes. From a management perspective, however, risks to population-level attributes and processes are often more relevant. Despite many published calls for population risk assessment and the abundance of available scientific research and technical tool
Recently, environmental scientists have been required to perform a new type of assessment-ecological risk assessment. This is the first book that explains how to perform ecological risk assessments and gives assessors access to the full range of useful data, models, and conceptual approaches they need to perform an accurate assessment. It explains how ecological risk assessment relates to more familiar types of assessments. It also shows how to organize and conduct an ecological risk assessment, including defining the source, selecting endpoints, describing the relevant features of the receiving environment, estimating exposure, estimating effects, characterizing the risks, and interacting with the risk manager. Specific technical topics include finding and selecting toxicity data; statistical and mathematical models of effects on organisms, populations, and ecosystems; estimation of chemical fate parameters; modeling of chemical transport and fate; estimation of chemical uptake by organisms; and estimation, propagation, and presentation of uncertainty. Ecological Risk Assessment also covers conventional risk assessments, risk assessments for existing contamination, large scale problems, exotic organisms, and risk assessments based on environmental monitoring. Environmental assessors at regulatory agencies, consulting firms, industry, and government labs need this book for its approaches and methods for ecological risk assessment. Professors in ecology and other environmental sciences will find the book's practical preparation useful for classroom instruction. Environmental toxicologists and chemists will appreciate the discussion of the utility for risk assessment of particular toxicity tests and chemical determinations.
How can environmental regulators use information on 48-hour toxicity tests to predict the effects of a few minutes of pollution? Or, at the other extreme, what is the relevance of 96-hour toxicity data for organisms that may have been exposed to a pollutant for six months or more? Time to event methods are the key to answering these types of questi
Expanding the risk assessment toolbox, this book provides a comprehensive and practical evaluation of specific ecological models for potential use in risk assessment. Ecological Modeling in Risk Assessment: Chemical Effects on Populations, Ecosystems, and Landscapes goes beyond current risk assessment practices for toxic chemicals as applied to individual-organism endpoints to describe ecological effects models useful at the population, ecosystem, and landscape levels. The authors demonstrate the utility of a set of ecological effects models, eventually improving the ecological relevance of risk assessments and making data collection more cost effective.
Toxic chemicals can exert effects on all levels of the biological hierarchy, from cells to organs to organisms to populations to entire ecosystems. However, most risk assessment models express their results in terms of effects on individual organisms, without corresponding information on how populations, groups of species, or whole ecosystems may respond to chemical stressors. Ecological Modeling in Risk Assessment: Chemical Effects on Populations, Ecosystems, and Landscapes takes a new approach by compiling and evaluating models that can be used in assessing risk at the population, ecosystem, and landscape levels. The authors give an overview of the current process of ecological risk assessment for toxic chemicals and of how modeling of populations, ecosystems, and landscapes could improve the status quo. They present a classification of ecological models and explain the differences between population, ecosystem, landscape, and toxicity-extrapolation models. The authors describe the model evaluation process and define evaluation criteria. Finally, the results of the model evaluations are presented in a concise format with recommendations on modeling approaches to use now and develop further. The authors present and evaluate various models on the basis of their realism and complexity, prediction of relevant assessment endpoints, treatment of uncertainty, regulatory acceptance, resource efficiency, and other criteria. They provide models that will improve the ecological relevance of risk assessments and make data collection more cost-effective. Ecological Modeling in Risk Assessment serves as a reference for selecting and applying the best models when performing a risk assessment.
Research on gene drive systems is rapidly advancing. Many proposed applications of gene drive research aim to solve environmental and public health challenges, including the reduction of poverty and the burden of vector-borne diseases, such as malaria and dengue, which disproportionately impact low and middle income countries. However, due to their intrinsic qualities of rapid spread and irreversibility, gene drive systems raise many questions with respect to their safety relative to public and environmental health. Because gene drive systems are designed to alter the environments we share in ways that will be hard to anticipate and impossible to completely roll back, questions about the ethics surrounding use of this research are complex and will require very careful exploration. Gene Drives on the Horizon outlines the state of knowledge relative to the science, ethics, public engagement, and risk assessment as they pertain to research directions of gene drive systems and governance of the research process. This report offers principles for responsible practices of gene drive research and related applications for use by investigators, their institutions, the research funders, and regulators.
Bringing together more than thirty influential regulators, academics, and industry scientists, Ecological Models for Regulatory Risk Assessments of Pesticides: Developing a Strategy for the Future provides a coherent, science-based view on ecological modeling for regulatory risk assessments. It discusses the benefits of modeling in the context of r
This book is about the legal, economical, and practical assessment and management of risky activities arising from routine, catastrophic environmental and occupational exposures to hazardous agents. It includes a discussion of aspects of US and European Union law concerning risky activities, and then develops the economic analyses that are relevant to implementing choices within a supply and demand framework. The book also discusses exposure-response and time-series models used in assessing air and water pollution, as well as probabilistic cancer models, including toxicological compartmental, pharmaco-kinetic models and epidemiological relative risks and odds ratios-based models. Statistical methods to measure agreement, correlation and discordance are also developed. The methods and criteria of decision-analysis, including several measures of value of information (VOI) conclude the expositions. This book is an excellent text for students studying risk assessment and management.