Download Free Ecological Investigations Of Yeasts In Antarctic Soils Book in PDF and EPUB Free Download. You can read online Ecological Investigations Of Yeasts In Antarctic Soils and write the review.

In the last few decades more and more yeast habitats have been explored, spanning cold climates to tropical regions and dry deserts to rainforests. As a result, a large body of ecological data has been accumulated and the number of known yeast species has increased rapidly. This book provides an overview of the biodiversity of yeasts in different habitats. Recent advances achieved by the application of molecular biological methods in the field of yeast taxonomy and ecology are also incorporated in the book. Wherever possible, the interaction between yeasts and the surrounding environment is discussed.
Yeasts are a versatile group of eukaryotic microorganisms, exhibiting heterogeneous nutritional profiles and an extraordinary ability to survive in a wide range of natural and man-associated ecosystems, including cold habitats. Cold-adapted yeasts inhabit numerous low-temperature environments where they are subjected to seasonal or permanent cold conditions. Hence, they have evolved a number of adaptation strategies with regard to growth and reproduction, metabolic activities, survival and protection. Due to their distinctive ability to thrive successfully at low and even subzero temperatures, cold-adapted yeasts are increasingly attracting attention in basic science and industry for their enormous biotechnological potential. This book presents our current understanding of the diversity and ecology of cold-adapted yeasts in worldwide cold ecosystems, their adaptation strategies, and their biotechnological significance. Special emphasis is placed on the exploitation of cold-adapted yeasts as a source of cold-active enzymes and biopolymers, as well as their benefits for food microbiology, bioremediation and biocontrol. Further, aspects of food biodeterioration are considered.
Since its discovery Antarctica has held a deep fascination for biologists. Extreme environmental conditions, seasonality and isolation have lead to some of the most striking examples of natural selection and adaptation on Earth. Paradoxically, some of these adaptations may pose constraints on the ability of the Antarctic biota to respond to climate change. Parts of Antarctica are showing some of the largest changes in temperature and other environmental conditions in the world. In this volume, published in association with the Royal Society, leading polar scientists present a synthesis of the latest research on the biological systems in Antarctica, covering organisms from microbes to vertebrate higher predators. This book comes at a time when new technologies and approaches allow the implications of climate change and other direct human impacts on Antarctica to be viewed at a range of scales; across entire regions, whole ecosystems and down to the level of species and variation within their genomes. Chapters address both Antarctic terrestrial and marine ecosystems, and the scientific and management challenges of the future are explored.
The International Committee on Microbial Ecology (ICOME) sponsors both the Interna tional Symposium on Microbial Ecology, held in various parts of the world at three-year intervals, and the publication of Advances in Microbial Ecology. Advances was estab lished to provide a vehicle for in-depth, critical, and even provocative reviews in microbial ecology and is now recognized as a major source of information for both practicing and prospective microbial ecologists. The Editorial Board of Advances nor mally solicits contributions from established workers in particular areas of microbial ecology, but individuals are encouraged to submit outlines of unsolicited contributions to any member of the Editorial Board for consideration for pUblication in Advances. Chapters in Volume 11 of Advances in Microbial Ecology include those on micro bial transformations of chitin by G. W. Gooday, organic sulfur compounds by D. P. Kelly and N. A. Smith, and phosphorus, including its removal in waste water treatment plants, by D. F. Toerien, A. Gerber, L. H. Lotter, and T. E. Cloete. The importance of diffusion processes in microbial ecology is discussed by A. L. Koch, and 1. I. Prosser reviews the application of mathematical modeling to nitrification processes. Considera tions of particular ecosystems include the Antarctic by D. D. Wynn-Williams and Australian coastal microbial mats by G. W. Skyring and 1. Bauld. Other chapters include the regulation of N2 fixation by H. W.
I belie ve that the book would provide an overview of the recent developments in the domain of yeast research with some new ideas, which could serve as an inspiration and challenge for researchers in this field. Ne w Delhi Prof. Asis Datta Dec. 24, 2007 F ormer Vice-chancellor, JNU Director, NCPGR (New Delhi) Pr eface Yeasts are eukaryotic unicellular microfungi that are widely distributed in the natural environments. Although yeasts are not as ubiquitous as bacteria in the na- ral environments, they have been isolated from terrestrial, aquatic and atmospheric environments. Yeast communities have been found in association with plants, a- mals and insects. Several species of yeasts have also been isolated from specialized or extreme environments like those with low water potential (e. g. high sugar/salt concentrations), low temperature (e. g. yeasts isolated from Antarctica), and low oxygen availability (e. g. intestinal tracts of animals). Around 1500 species of yeasts belonging to over 100 genera have been described so far. It is estimated that only 1% of the extant yeasts on earth have been described till date. Therefore, global efforts are underway to recover new yeast species from a variety of normal and extreme environments. Yeasts play an important role in food chains, and carbon, nitrogen and sulphur cycles. Yeasts can be genetically manipulated by hybridization, mutation, rare m- ing, cytoduction, spheroplast fusion, single chromosomal transfer and transfor- tion using recombinant technology. Yeasts (e. g.
Pollution has accompanied polar exploration since Captain John Davis' arrival on the Antarctic continent in 1821 and has become an unavoidable consequence of oil spills in our polar regions. Fortunately, many of the organisms indigenous to Polar ecosystems have the ability to degrade pollutants. It is this metabolic capacity that forms the basis fo
This book provides a broad overview how extremophiles can be used in biotechnology, including for the production and degradation of compounds. It reviews various recent discoveries and applications related to a large variety of extremophiles, considering both prokaryotes as well as eukaryotes.