Download Free Eco Sustainable Bioremediation Of Textile Dye Wastewaters Innovative Microbial Treatment Technologies And Mechanistic Insights Of Textile Dye Biodegradation Book in PDF and EPUB Free Download. You can read online Eco Sustainable Bioremediation Of Textile Dye Wastewaters Innovative Microbial Treatment Technologies And Mechanistic Insights Of Textile Dye Biodegradation and write the review.

Wastewater Treatment Using Green Synthesis discusses advances in wastewater treatment with a focus on biological processes. Major topics discussed include bioremediation through microorganisms, green and iron-based nanoparticles in wastewater treatment, TiO2 Doped Lignocellulosic Biopolymer with an emphasis on their photodegradation potential for a variety of pollutants, and permanent film growth. It further includes remediation of industrial sludges/effluents with a particular emphasis on biological treatment, phytoremediation, and de-ballasting water treatment technology. Features: • Focuses on the implementation of effective wastewater treatment with orientation towards biological processes • Covers both biological and physico-chemical waste and wastewater treatment processes, focusing on emerging techniques • Reviews computational method approaches, the application of TiO2-doped biopolymers, iron nanoparticles, and the use of molecular techniques for wastewater treatment • Illustrates molecular docking, molecular dynamics simulation, homology modelling, and biodegradation pathways prediction • Includes dedicated chapters on biological wastewater treatment This book is aimed at graduate students and researchers in environmental and chemical engineering with a focus on wastewater treatment.
This book integrates knowledge about innovative technologies developed in the past decade with information about commercial-scale processes. It is written with the objective to help readers to understand the potential of achieving sustainability and high efficiency in wastewater treatment. The book presents nine chapters. Chapter 1 details the types of wastewater, its characteristics, and the major commercial-scale strategies employed to treat wastewater. Chapter 2 details the different types of physicochemical methods utilized for the remediation of heavy metals, dyes, and xenobiotics. Chapters 3 and 4 highlight innovations in the advanced oxidation process and adsorption for remediation of such complex molecules, respectively. Chapters 5, 6, and 7 highlight the recent innovations in bioremediation of xenobiotics, heavy metals, and dyes, respectively. Finally, chapters 8 and 9 discuss the latest technologies, prevailing bottlenecks, and the path ahead towards commercial viability and environmental sustainability in both physico-chemical and biological treatment processes.
Rapid industrialization is a serious concern in the context of a healthy environment. With the growth in the number of industries, the waste generated is also growing exponentially. The various chemical processes operating in the manufacturing industry generate a large number of by-products, which are largely harmful and toxic pollutants and are generally discharged into the natural water bodies. Once the pollutants enter the environment, they are taken up by different life forms, and because of bio-magnification, they affect the entire food chain and have severe adverse effects on all life forms, including on human health. Although, various physico-chemical and biological approaches are available for the removal of toxic pollutants, unfortunately these are often ineffective and traditional clean up practices are inefficient. Biological approaches utilizing microorganisms (bacterial/fungi/algae), green plants or their enzymes to degrade or detoxify environmental pollutants such as endocrine disruptors, toxic metals, pesticides, dyes, petroleum hydrocarbons and phenolic compounds, offer eco- friendly approaches. Such eco-friendly approaches are often more effective than traditional practices, and are safe for both industry workers as well as environment. This book provides a comprehensive overview of various toxic environmental pollutants from a variety natural and anthropogenic sources, their toxicological effects on the environment, humans, animals and plants as well as their biodegradation and bioremediation using emerging and eco-friendly approaches (e.g. Anammox technology, advanced oxidation processes, membrane bioreactors, membrane processes, GMOs), microbial degradation (e.g. bacteria, fungi, algae), phytoremediation, biotechnology and nanobiotechnology. Offering fundamental and advanced information on environmental problems, challenges and bioremediation approaches used for the remediation of contaminated sites, it is a valuable resource for students, scientists and researchers engaged in microbiology, biotechnology and environmental sciences.
Immobilized Microbial Cells, Volume 4 provides an overview of the methods of immobilization, applications, and ways of utilizing immobilized microbial cells and subcellular organelles and chloroplasts as biocatalysts. This volume is comprised of seven chapters. It begins with the historical background of immobilized cell research. Subsequent chapters focus on the methods of immobilization and applications of immobilized microbial cells, living cells, and organelles. The last two chapters discuss gas production of immobilized cells for energy generation and the chemical engineering analysis of immobilized-cell systems. The book will be of great use to chemists and chemical engineers.
Textile dyes enhance our environment, bringing colour into our lives. The current range of dyes have been developed to withstand environmental effects, such as degradation by exposure to light and water. However, the industry involved with the application of dyes to textiles has a responsibility to ensure that potential for harm to the environment, for example through residues in waste-streams, and to the consumer is minimised. Written by an international team of contributors, this collection reviews current legislation and key technologies which make textile dyeing more efficient and environmentally friendly.The book begins by detailing European and US legislation relating to textile dyeing. Further chapters cover toxicology, environmentally responsible application of dyes and supercritical fluid textile dyeing. The book concludes with chapters on the reduction of pollution and minimisation of waste, the re-use of spent dyebath, chemical treatment of dye effluent and biotechnological treatment of dye effluent.Environmental aspects of textile dyeing is a standard reference source for manufacturers concerned with developing a sustainable industry. - Crucial guide to minimising harmful effects on environment and the consumer - Reviews current technologies and European and US legislation - Essential for all textile manufacturers
Today synthetic dyes are used extensively in the textile dyeing, paper printing, color photography, pharmaceuticals, food and drink, cosmetic and leather industries. As of now, over 100,000 different dyes are available, with an annual production of over 700,000 metric tons. These industries discharge an enormous amount of colored effluents into natural water bodies, with or without treatment. The textile industry alone discharges 280,000 tons of dyes every year, making it the largest contributor to colored effluent discharge. Although a variety of treatment technologies are available, including adsorption, chemical oxidation, precipitation, coagulation, filtration electrolysis and photodegradation, biological and microbiological methods employing activated sludge, pure cultures, microbial consortia and degradative enzymes are economically viable, effective and environmentally responsible options. As such, this book gathers review articles from international experts working on the microbial degradation of synthetic dyes, offering readers the latest information on the subject. It is intended as a quick reference guide for academics, scientists and industrialists around the world.
This book discusses the bioremediation of both solid and liquid waste, including regional solutions for India as well as globally relevant applications. The topics covered include pollutant reduction through composting, solutions for petroleum refinery waste, use of microorganisms in the bioremediation of industrial waste and toxicity reduction, microbial fuel cells, and microbial depolymerisation. The book also explores the biosorption of metals and the bioremediation of leachates, especially with regard to soil and groundwater remediation. It is a valuable resource for researchers, professionals, and policy makers alike.
Photocatalytic Degradation of Dyes: Current Trends and Future Perspectives covers in detail current trends and future aspects on photocatalytic degradation of organic dyes using novel photocatalytic techniques such as metallic nanoparticles, heterogeneous and hybrid systems using visible light irradiation. It highlights the most recent scientific and technological achievements and importance of degradation of dyes in the textile effluent by simple environmental friendly approaches using eco-friendly catalysts. It is of assistance to everyone interested in bioremediation of effluents: professionals, consulting engineers, academicians, and research scholars as well. - Describes the basic photocatalytic techniques and their application in wastewater treatment - Covers the key reactive species accounting for the photodegradation of different dyes, providing helpful guidelines that could be applied to foster the development of efficient photodegradation systems - Includes Description of a wide variety of catalysts and their application in degradation of dyes in the effluent of variable matrices (such as textile effluent, pharmaceutical industry effluent, food industry effluent) - Presents the application of doped semiconductors in the degradation of dyes, hybrid systems and their importance in the dye degradation - Describes the biological synthesis of metallic nanostructures and their use in dye degradation using visible range of light irradiation - Discusses the mechanistic aspect of the dye degradation using photo catalysts
This book examines bioremediation technologies as a tool for environmental protection and management. It provides global perspectives on recent advances in the bioremediation of various environmental pollutants. Topics covered include comparative analysis of bio-gas electrification from anaerobic digesters, mathematical modeling in bioremediation, the evaluation of next-generation sequencing technologies for environmental monitoring in wastewater abatement; and the impact of diverse wastewater remediation techniques such as the use of nanofibers, microbes and genetically modified organisms; bioelectrochemical treatment; phytoremediation; and biosorption strategies. The book is targeted at scientists and researchers working in the field of bioremediation.