Download Free Dynamics Of Reason Book in PDF and EPUB Free Download. You can read online Dynamics Of Reason and write the review.

This book introduces a new approach to the issue of radical scientific revolutions, or "paradigm-shifts," given prominence in the work of Thomas Kuhn. The book articulates a dynamical and historicized version of the conception of scientific a priori principles first developed by the philosopher Immanuel Kant. This approach defends the Enlightenment ideal of scientific objectivity and universality while simultaneously doing justice to the revolutionary changes within the sciences that have since undermined Kant's original defense of this ideal. Through a modified Kantian approach to epistemology and philosophy of science, this book opposes both Quinean naturalistic holism and the post-Kuhnian conceptual relativism that has dominated recent literature in science studies. Focussing on the development of "scientific philosophy" from Kant to Rudolf Carnap, along with the parallel developments taking place in the sciences during the same period, the author articulates a new dynamical conception of relativized a priori principles. This idea applied within the physical sciences aims to show that rational intersubjective consensus is intricately preserved across radical scientific revolutions or "paradigm-shifts and how this is achieved.
Our preferences determine how we act and think, but exactly what the mechanics are and how they work is a central cause of concern in many disciplines. This book uses techniques from modern logics of information flow and action to develop a unified new theory of what preference is and how it changes. The theory emphasizes reasons for preference, as well as its entanglement with our beliefs. Moreover, the book provides dynamic logical systems which describe the explicit triggers driving preference change, including new information, suggestions, and commands. In sum, the book creates new bridges between many fields, from philosophy and computer science to economics, linguistics, and psychology. For the experienced scholar access to a large body of recent literature is provided and the novice gets a thorough introduction to the action and techniques of dynamic logic.
Multicultural Dynamics and the Ends of History provides a strikingly original reading of key texts in the philosophy of history by Kant, Hegel, and Marx, as well as strong arguments for why these texts are still relevant to understanding history today. Réal Fillion offers a critical exposition of the theses of these three authors on the dynamics and the ends of history, in order to provide an answer to the question: "Where are we headed?" Grounding his answer in the twin observations that the world is becoming increasingly multicultural and increasingly unified, Fillion reasserts the task of the speculative philosophy of history as it had been understood by German philosophy: the articulation and understanding the historical process as a developmental whole. Fillion's interpretation engages many recent strands of social and political thought in order to provide a new understanding of current events, and possible futures, grounded in the understanding of the dynamics of the past and the present provided by Kant, Hegel, and Marx. The result is a rich and timely answer to the question of where our world is headed today.
“The Knowledge Machine is the most stunningly illuminating book of the last several decades regarding the all-important scientific enterprise.” —Rebecca Newberger Goldstein, author of Plato at the Googleplex A paradigm-shifting work, The Knowledge Machine revolutionizes our understanding of the origins and structure of science. • Why is science so powerful? • Why did it take so long—two thousand years after the invention of philosophy and mathematics—for the human race to start using science to learn the secrets of the universe? In a groundbreaking work that blends science, philosophy, and history, leading philosopher of science Michael Strevens answers these challenging questions, showing how science came about only once thinkers stumbled upon the astonishing idea that scientific breakthroughs could be accomplished by breaking the rules of logical argument. Like such classic works as Karl Popper’s The Logic of Scientific Discovery and Thomas Kuhn’s The Structure of Scientific Revolutions, The Knowledge Machine grapples with the meaning and origins of science, using a plethora of vivid historical examples to demonstrate that scientists willfully ignore religion, theoretical beauty, and even philosophy to embrace a constricted code of argument whose very narrowness channels unprecedented energy into empirical observation and experimentation. Strevens calls this scientific code the iron rule of explanation, and reveals the way in which the rule, precisely because it is unreasonably close-minded, overcomes individual prejudices to lead humanity inexorably toward the secrets of nature. “With a mixture of philosophical and historical argument, and written in an engrossing style” (Alan Ryan), The Knowledge Machine provides captivating portraits of some of the greatest luminaries in science’s history, including Isaac Newton, the chief architect of modern science and its foundational theories of motion and gravitation; William Whewell, perhaps the greatest philosopher-scientist of the early nineteenth century; and Murray Gell-Mann, discoverer of the quark. Today, Strevens argues, in the face of threats from a changing climate and global pandemics, the idiosyncratic but highly effective scientific knowledge machine must be protected from politicians, commercial interests, and even scientists themselves who seek to open it up, to make it less narrow and more rational—and thus to undermine its devotedly empirical search for truth. Rich with illuminating and often delightfully quirky illustrations, The Knowledge Machine, written in a winningly accessible style that belies the import of its revisionist and groundbreaking concepts, radically reframes much of what we thought we knew about the origins of the modern world.
What is the difference between a wink and a blink? The answer is important not only to philosophers of mind, for significant moral and legal consequences rest on the distinction between voluntary and involuntary behavior. However, "action theory"—the branch of philosophy that has traditionally articulated the boundaries between action and non-action, and between voluntary and involuntary behavior—has been unable to account for the difference. Alicia Juarrero argues that a mistaken, 350-year-old model of cause and explanation—one that takes all causes to be of the push-pull, efficient cause sort, and all explanation to be prooflike—underlies contemporary theories of action. Juarrero then proposes a new framework for conceptualizing causes based on complex adaptive systems. Thinking of causes as dynamical constraints makes bottom-up and top-down causal relations, including those involving intentional causes, suddenly tractable. A different logic for explaining actions—as historical narrative, not inference—follows if one adopts this novel approach to long-standing questions of action and responsibility.
This exploration of the scientific limits of knowledge challenges our deep-seated beliefs about our universe, our rationality, and ourselves. “A must-read for anyone studying information science.” —Publishers Weekly, starred review Many books explain what is known about the universe. This book investigates what cannot be known. Rather than exploring the amazing facts that science, mathematics, and reason have revealed to us, this work studies what science, mathematics, and reason tell us cannot be revealed. In The Outer Limits of Reason, Noson Yanofsky considers what cannot be predicted, described, or known, and what will never be understood. He discusses the limitations of computers, physics, logic, and our own intuitions about the world—including our ideas about space, time, and motion, and the complex relationship between the knower and the known. Yanofsky describes simple tasks that would take computers trillions of centuries to complete and other problems that computers can never solve: • perfectly formed English sentences that make no sense • different levels of infinity • the bizarre world of the quantum • the relevance of relativity theory • the causes of chaos theory • math problems that cannot be solved by normal means • statements that are true but cannot be proven Moving from the concrete to the abstract, from problems of everyday language to straightforward philosophical questions to the formalities of physics and mathematics, Yanofsky demonstrates a myriad of unsolvable problems and paradoxes. Exploring the various limitations of our knowledge, he shows that many of these limitations have a similar pattern and that by investigating these patterns, we can better understand the structure and limitations of reason itself. Yanofsky even attempts to look beyond the borders of reason to see what, if anything, is out there.
We barely talk about them and seldom know their names. Philosophy has always overlooked them; even biology considers them as mere decoration on the tree of life. And yet plants give life to the Earth: they produce the atmosphere that surrounds us, they are the origin of the oxygen that animates us. Plants embody the most direct, elementary connection that life can establish with the world. In this highly original book, Emanuele Coccia argues that, as the very creator of atmosphere, plants occupy the fundamental position from which we should analyze all elements of life. From this standpoint, we can no longer perceive the world as a simple collection of objects or as a universal space containing all things, but as the site of a veritable metaphysical mixture. Since our atmosphere is rendered possible through plants alone, life only perpetuates itself through the very circle of consumption undertaken by plants. In other words, life exists only insofar as it consumes other life, removing any moral or ethical considerations from the equation. In contrast to trends of thought that discuss nature and the cosmos in general terms, Coccia’s account brings the infinitely small together with the infinitely big, offering a radical redefinition of the place of humanity within the realm of life.
This book develops a view of logic as a theory of information-driven agency and intelligent interaction between many agents - with conversation, argumentation and games as guiding examples. It provides one uniform account of dynamic logics for acts of inference, observation, questions and communication, that can handle both update of knowledge and revision of beliefs. It then extends the dynamic style of analysis to include changing preferences and goals, temporal processes, group action and strategic interaction in games. Throughout, the book develops a mathematical theory unifying all these systems, and positioning them at the interface of logic, philosophy, computer science and game theory. A series of further chapters explores repercussions of the 'dynamic stance' for these areas, as well as cognitive science.
Conceptual Dynamics is an innovative textbook designed to provide students with a solid understanding of the underlying concepts required to master complex dynamics problems. This textbook uses a variety of problem types including, conceptual, traditional dynamics, computer based and design problems. Use of these diverse problems strengthens students understanding of core concepts and encourages them to become more active in the learning process. Conceptual Dynamics has an extensive companion website (ConceptualDynamics.com) containing interactive quizzes and animations for students. At a net price of only $55 Conceptual Dynamics is the most affordable dynamics textbook available. Throughout this book, sets of “conceptual” problems are included that are meant to test the understanding of fundamental ideas presented in the text without requiring significant calculation. These problems can be assigned as homework or can be employed in class as exercises that more actively involve the students in lecture. When employed in class, these problems can provide the instructor with real-time feedback on how well the students are grasping the presented material. In order to assist the instructor, PowerPoint lecture slides are provided to accompany the book. Boxes are included throughout the text leaving places where students can record important definitions and the correct responses to the conceptual questions presented within the PowerPoint slides. In this sense, the book is meant to be used as a tool by which students can come to learn and appreciate the subject of dynamics. Students are further encouraged to be active participants in their learning through activities presented at the end of each chapter. These activities can be performed in class involving the students or as demonstrations, or can be assigned to the students to perform outside of class. These activities help the students build physical intuition for the sometimes abstract theoretical concepts presented in the book and in lecture. Along with the standard dynamics problems that are assigned as part of a student's homework, this book also includes computer based and design problems. The computer based problems in this book require the student to derive the equation of motion and to sometimes solve the resulting differential equation. The computer problems range from problems that may be completed using a spreadsheet to problems that require coding or a specialized software package (such as Mathematica, Maple, or MATLAB/Simulink). Design problems are included in each chapter in order to emphasize the importance of the material for students, as well as to get the students to think about real world considerations. The application of the fundamental subject material to various design problems helps students see the material from a different perspective. It will also help them solidify their understanding of the material. This textbook may be used as a standalone text or in conjunction with on-line lectures and effectively assist an instructor in “inverting the classroom”.