Download Free Dynamics Of Gas Surface Scattering Book in PDF and EPUB Free Download. You can read online Dynamics Of Gas Surface Scattering and write the review.

Dynamics of Gas-Surface Scattering deals with the dynamics of scattering as inferred from known properties of gases and solids. This book discusses measurements of spatial distributions of scattered atomic and molecular streams, and of the energy and momentum which gas particles exchange at solid surfaces. It also considers two regimes of scattering, both of which are associated with a lower range of incident gas energies: the thermal and structure scattering regimes. Comprised of 10 chapters, this book opens with a brief historical overview of the early experiments that investigated the dynamics of scattering of gases by surfaces. The discussion then turns to some elements of the kinetic theory of gases; intermodular potentials and interaction regimes; and classical-mechanical lattice models used in gas-surface scattering theory. The applications of molecular beams to the study of gas-surface scattering phenomena are also described. The remaining chapters focus on experiments and theories on scattering of molecular streams by surfaces of solids, with emphasis on thermal and structure regimes of inelastic scattering; quantum theory of gas-surface scattering; and quantum mechanical scattering phenomena. This text concludes with an analysis of energy exchange processes that may occur when a solid surface is completely immersed in a still gas. This monograph will be a valuable resource for students and practitioners of physics, chemistry, and applied mathematics.
This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level understanding of physical and chemical processes at surfaces, with particular emphasis on dynamical aspects. This book is a reference in the field.
Fundamentals of Gas–Surface Interactions presents the study of the surface itself and the study of the gas phase partner of the interaction in which physical or chemical transformation of the gas resulted from that interaction. This book discusses the study of the energy and momentum exchanges resulting from the gas–solid physical interaction in which either gas or solid phase properties can be measured. Organized into three parts encompassing 33 chapters, this book begins with an overview of the different sensitive physical methods for the study of surface topography, surface defects, and surface irregularities to an accuracy of a few Angstroms. This text then reviews the adsorption at very low coverage that has yielded to equilibrium analysis. Other chapters consider the measurement of surface area by adsorption and optical techniques. The final chapter deals with scattering processes including momentum and energy transfer. This book is a valuable resource for engineers.
The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. • This is the only series of volumes available that presents the cutting edge of research in chemical physics • Includes 10 contributions from leading experts in this field of research • Contains a representative cross-section of research in chemical reaction dynamics and state of the art quantum description of intramolecular and intermolecular dynamics • Structured with an editorial framework that makes the book an excellent supplement to an advanced graduate class in physical chemistry, chemical physics, or molecular physics
A model of rarefied gas flow in tubes was developed which combines a lobular distribution with diffuse reflection at the wall. The model with Monte Carlo techniques was used to explain previously observed deviations in the free molecular thermal transpiration ratio which suggest molecules can have a greater tube transmission probability in a hot-to-cold direction than in a cold-to-hot direction. The model yields correct magnitudes of transmission probability ratios for helium in Pyrex tubing (1.09 to 1.14), and some effects of wall-temperature distribution, tube surface roughness, tube dimensions, gas temperature, and gas molecular mass.
Elementary Processes in Excitations and Reactions on Solid Surfaces explores the fundamental nature of dynamics on solid surfaces. Attempts are made to reveal various aspects of elementary processes in excitations and reactions on solid surfaces by recent theoretical and experimental developments of the subjects such as molecular beams interacting with surfaces, ion beam scattering, laser-induced dynamical processes, electronically induced dynamical processes, and optical properties of solid surfaces. This volume is devided into three parts. Part I is concerned mainly with the rich reaction dynamics on potential-energy surfaces. Part II is devoted to the interplay of excitations and reactions with particular attention given to the charge transfer as well as the energy transfer between well-characterized surfaces and beams. In Part III, new and rapidly developing methods are introduced.
Principles of Adsorption and Reaction on Solid Surfaces As with other books in the field, Principles of Adsorption and Reaction on Solid Surfaces describes what occurs when gases come in contact with various solid surfaces. But, unlike all the others, it also explains why. While the theory of surface reactions is still under active development, the approach Dr. Richard Masel takes in this book is to outline general principles derived from thermodynamics and reaction rate theory that can be applied to reactions on surfaces, and to indicate ways in which these principles may be applied. The book also provides a comprehensive treatment of the latest quantitative surface modeling techniques with numerous examples of their use in the fields of chemical engineering, physical chemistry, and materials science. A valuable working resource and an excellent graduate-level text, Principles of Adsorption and Reaction on Solid Surfaces provides readers with: * A detailed look at the latest advances in understanding and quantifying reactions on surfaces * In-depth reviews of all crucial background material * 40 solved examples illustrating how the methods apply to catalysis, physical vapor deposition, chemical vapor deposition, electrochemistry, and more * 340 problems and practice exercises * Sample computer programs * Universal plots of many key quantities * Detailed, class-tested derivations to help clarify key results The recent development of quantitative techniques for modeling surface reactions has led to a number of exciting breakthroughs in our understanding of what happens when gases come in contact with solid surfaces. While many books have appeared describing various experimental modeling techniques and the results obtained through their application, until now, there has been no single-volume reference devoted to the fundamental principles governing the processes observed. The first book to focus on governing principles rather than experimental techniques or specific results, Principles of Adsorption and Reaction on Solid Surfaces provides students and professionals with a quantitative treatment of the application of principles derived from the fields of thermodynamics and reaction rate theory to the investigation of gas adsorption and reaction on solid surfaces. Writing for a broad-based audience including, among others, chemical engineers, chemists, and materials scientists, Dr. Richard I. Masel deftly balances basic background in areas such as statistical mechanics and kinetics with more advanced applications in specialized areas. Principles of Adsorption and Reaction on Solid Surfaces was also designed to provide readers an opportunity to quickly familiarize themselves with all of the important quantitative surface modeling techniques now in use. To that end, the author has included all of the key equations involved as well as numerous real-world illustrations and solved examples that help to illustrate how the equations can be applied. He has also provided computer programs along with universal plots that make it easy for readers to apply results to their own problems with little computational effort. Principles of Adsorption and Reaction on Solid Surfaces is a valuable working resource for chemical engineers, physical chemists, and materials scientists, and an excellent text for graduate students in those disciplines.
Now updated-the current state of development of modern surface science Since the publication of the first edition of this book, molecular surface chemistry and catalysis science have developed rapidly and expanded into fields where atomic scale and molecular information were previously not available. This revised edition of Introduction to Surface Chemistry and Catalysis reflects this increase of information in virtually every chapter. It emphasizes the modern concepts of surface chemistry and catalysis uncovered by breakthroughs in molecular-level studies of surfaces over the past three decades while serving as a reference source for data and concepts related to properties of surfaces and interfaces. The book opens with a brief history of the evolution of surface chemistry and reviews the nature of various surfaces and interfaces encountered in everyday life. New research in two crucial areas-nanomaterials and polymer and biopolymer interfaces-is emphasized, while important applications in tribology and catalysis, producing chemicals and fuels with high turnover and selectivity, are addressed. The basic concepts surrounding various properties of surfaces such as structure, thermodynamics, dynamics, electrical properties, and surface chemical bonds are presented. The techniques of atomic and molecular scale studies of surfaces are listed with references to up-to-date review papers. For advanced readers, this book covers recent developments in in-situ surface analysis such as high- pressure scanning tunneling microscopy, ambient pressure X-ray photoelectron spectroscopy, and sum frequency generation vibrational spectroscopy (SFG). Tables listing surface structures and data summarizing the kinetics of catalytic reactions over metal surfaces are also included. New to this edition: A discussion of new physical and chemical properties of nanoparticles Ways to utilize new surface science techniques to study properties of polymers, reaction intermediates, and mobility of atoms and molecules at surfaces Molecular-level studies on the origin of the selectivity for several catalytic reactions A microscopic understanding of mechanical properties of surfaces Updated tables of experimental data A new chapter on "soft" surfaces, polymers, and biointerfaces Introduction to Surface Chemistry and Catalysis serves as a textbook for undergraduate and graduate students taking advanced courses in physics, chemistry, engineering, and materials science, as well as researchers in surface science, catalysis science, and their applications.
Laser processing is now a rapidly increasing field with many real and potential applications in different areas of technology such as micromecha nics, metallurgy, integrated optics, and semiconductor device fabrication. The neces s ity for such soph i st i cated 1 i ght sources as 1 asers is based on the spatial coherence and the monochromaticity of laser light. The spatial coherence permits extreme focussing of the laser light resulting in the availability of high energy densities which can be used for strongly loca lized heat- and chemical-treatment of materials, with a resolution down to 1 ess than 1 lJIll. When us i ng pul sed or scanned cw-l asers, 1 oca 1 i zat i on in time is also possible. Additionally, the monochromaticity of laser light allows for control of the depth of heat treatment and/or selective, nonthermal bond breaking - within the surface of the material or within the molecules of the surrounding reactive atmosphere - simply by tuning the laser wavelength. These inherent advantages of laser light permit micromachining of materials (drilling, cutting, welding etc.) and also allow single-step controlled area processing of thin films and surfaces. Processes include structural transformation (removal of residual damage, grain growth in polycrystalline material, amorphization, surface hardening etc.), etching, doping, alloying, or deposition. In addition, laser processing is not 1 imited to planar substrates.
The suggestion by Dr. Franklin S. Harris, Jr. , that these books be written arose pursuant to the editor's plaints that despite the implicitly or explicitly ack nowledged importance of both aerosols and particulate matter in innumerable domains of technology and human welfare, investigations of these subjects were generally not supported independently of the narrowest conceivable domains of their appli cations. Frank Harris, who has long been a contributor in one of the important domains of aerosol macrophysics, atmospheric optics, challenged the editor to elaborate his views. Ideally, they would have taken the form of a monograph; however, there is as yet an insufficient body of information to present a unified treatment. At the same time, substantial efforts are in progress in the component fields to hold the promise for the emergence of unifying elements which will even tually facilitate their presentation to be made with a high degree of integrity. There are numerous pertinent and systematic tie-ins between project-oriented aerosol work and basic physical investigations which are themselves quite closely akin to much classical and current work in physical science. The most significant aspect of these tie-ins is their potential for making substantial contributions to the functional needs of the applications areas while stimulating significant questions of basic physics. For this to be possible, it is necessary that the most relevant areas of physics be identified in such a manner as to make clear their re levance for aerosol-related studies and vice versa.