Download Free Dynamics And Control Book in PDF and EPUB Free Download. You can read online Dynamics And Control and write the review.

This applied and comprehensive book combines topical coverage of both System Dynamics and Automatic Controls in one text, resulting in a pedagogically sound presentation of both subjects that can be used in this standard two-course sequence. It is thorough and complete, with, according to one reviewer, a "tremendous number of interesting practice problems covering a broad range of areas, giving the instructor significant choice and flexibility" in teaching the material. The book also has a wealth of worked-out, real-world examples, with every step clearly shown and explained. Cumulative examples that build through succeeding chapters demonstrate the stages of system modeling, from initial steps - which include the important but often omitted physical modeling process - through mathematical analysis to design realization. The result is a new and unified presentation of system dynamics and control, founded on a wide range of systems (mechanical, electrical, electromechanical - including MEMS, fluid, thermal, and chemical), with a common state-space approach.
The new 4th edition of Seborg’s Process Dynamics Control provides full topical coverage for process control courses in the chemical engineering curriculum, emphasizing how process control and its related fields of process modeling and optimization are essential to the development of high-value products. A principal objective of this new edition is to describe modern techniques for control processes, with an emphasis on complex systems necessary to the development, design, and operation of modern processing plants. Control process instructors can cover the basic material while also having the flexibility to include advanced topics.
This new text/reference is an excellent resource for the foundations and applications of control theory and nonlinear dynamics. All graduates, practitioners, and professionals in control theory, dynamical systems, perturbation theory, engineering, physics and nonlinear dynamics will find the book a rich source of ideas, methods and applications. With its careful use of examples and detailed development, it is suitable for use as a self-study/reference guide for all scientists and engineers.
A text/reference on analysis of structures that deform in use. Presents a new, integrated approach to analytical dynamics, structural dynamics and control theory and goes beyond classical dynamics of rigid bodies to incorporate analysis of flexibility of structures. Includes real-world examples of applications such as robotics, precision machinery and aircraft structures.
Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science.
Satellites are used increasingly in telecommunications, scientific research, surveillance, and meteorology, and these satellites rely heavily on the effectiveness of complex onboard control systems. This 1997 book explains the basic theory of spacecraft dynamics and control and the practical aspects of controlling a satellite. The emphasis throughout is on analyzing and solving real-world engineering problems. For example, the author discusses orbital and rotational dynamics of spacecraft under a variety of environmental conditions, along with the realistic constraints imposed by available hardware. Among the topics covered are orbital dynamics, attitude dynamics, gravity gradient stabilization, single and dual spin stabilization, attitude maneuvers, attitude stabilization, and structural dynamics and liquid sloshing.
Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicles. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability control has been enhanced. The use of feedback control systems on automobiles is growing rapidly. This book is intended to serve as a useful resource to researchers who work on the development of such control systems, both in the automotive industry and at universities. The book can also serve as a textbook for a graduate level course on Vehicle Dynamics and Control.
Dynamics and Control of Mechanical Systems in Offshore Engineering is a comprehensive treatment of marine mechanical systems (MMS) involved in processes of great importance such as oil drilling and mineral recovery. Ranging from nonlinear dynamic modeling and stability analysis of flexible riser systems, through advanced control design for an installation system with a single rigid payload attached by thrusters, to robust adaptive control for mooring systems, it is an authoritative reference on the dynamics and control of MMS. Readers will gain not only a complete picture of MMS at the system level, but also a better understanding of the technical considerations involved and solutions to problems that commonly arise from dealing with them. The text provides: · a complete framework of dynamical analysis and control design for marine mechanical systems; · new results on the dynamical analysis of riser, mooring and installation systems together with a general modeling method for a class of MMS; · a general method and strategy for realizing the control objectives of marine systems with guaranteed stability the effectiveness of which is illustrated by extensive numerical simulation; and · approximation-based control schemes using neural networks for installation of subsea structures with attached thrusters in the presence of time-varying environmental disturbances and parametric uncertainties. Most of the results presented are analytical with repeatable design algorithms with proven closed-loop stability and performance analysis of the proposed controllers is rigorous and detailed. Dynamics and Control of Mechanical Systems in Offshore Engineering is primarily intended for researchers and engineers in the system and control community, but graduate students studying control and marine engineering will also find it a useful resource as will practitioners working on the design, running or maintenance of offshore platforms.
This book addresses problems in structural dynamics and control encountered in applications such as robotics, aerospace structures, earthquake-damage prevention, and active noise suppression. The rapid developments of new technologies and computational power have made it possible to formulate and solve engineering problems that seemed unapproachable only a few years ago. This presentation combines concepts from control engineering (such as system norms and controllability) and structural engineering (such as modal properties and models), thereby revealing new structural properties as well as giving new insight into well-known laws. This book will assist engineers in designing control systems and dealing with the complexities of structural dynamics.