Download Free Dynamical Zeta Functions For Maps Of The Interval Book in PDF and EPUB Free Download. You can read online Dynamical Zeta Functions For Maps Of The Interval and write the review.

With a general introduction to the subject, this title presents a detailed study of the zeta functions associated with piecewise monotone maps of the interval $ 0,1]$. In particular, it gives a proof of a generalized form of the Baladi-Keller theorem relating the poles of $\zeta (z)$ and the eigenvalues of the transfer operator.
Dynamical zeta functions are associated to dynamical systems with a countable set of periodic orbits. The dynamical zeta functions of the geodesic flow of lo cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and were suggested by an analogy between Weil's explicit formula for the Riemann zeta function and Selberg's trace formula ([261]). The purpose of the cohomological theory is to understand the analytical properties of the zeta functions on the basis of suitable analogs of the Lefschetz fixed point formula in which periodic orbits of the geodesic flow take the place of fixed points. This approach is parallel to Weil's idea to analyze the zeta functions of pro jective algebraic varieties over finite fields on the basis of suitable versions of the Lefschetz fixed point formula. The Lefschetz formula formalism shows that the divisors of the rational Hassc-Wcil zeta functions are determined by the spectra of Frobenius operators on l-adic cohomology.
The spectra of transfer operators associated to dynamical systems, when acting on suitable Banach spaces, contain key information about the ergodic properties of the systems. Focusing on expanding and hyperbolic maps, this book gives a self-contained account on the relation between zeroes of dynamical determinants, poles of dynamical zeta functions, and the discrete spectra of the transfer operators. In the hyperbolic case, the first key step consists in constructing a suitable Banach space of anisotropic distributions. The first part of the book is devoted to the easier case of expanding endomorphisms, showing how the (isotropic) function spaces relevant there can be studied via Paley–Littlewood decompositions, and allowing easier access to the construction of the anisotropic spaces which is performed in the second part. This is the first book describing the use of anisotropic spaces in dynamics. Aimed at researchers and graduate students, it presents results and techniques developed since the beginning of the twenty-first century.
In the paper we study new dynamical zeta functions connected with Nielsen fixed point theory. The study of dynamical zeta functions is part of the theory of dynamical systems, but it is also intimately related to algebraic geometry, number theory, topology and statistical mechanics. The paper consists of four parts. Part I presents a brief account of the Nielsen fixed point theory. Part II deals with dynamical zeta functions connected with Nielsen fixed point theory. Part III is concerned with analog of Dold congruences for the Reidemeister and Nielsen numbers. In Part IV we explain how dynamical zeta functions give rise to the Reidemeister torsion, a very important topological invariant which has useful applications in knots theory,quantum field theory and dynamical systems.
Consider a space M, a map f:M\to M, and a function g:M \to {\mathbb C}. The formal power series \zeta (z) = \exp \sum ^\infty _{m=1} \frac {z^m}{m} \sum _{x \in \mathrm {Fix}\, f^m} \prod ^{m-1}_{k=0} g (f^kx) yields an example of a dynamical zeta function. Such functions have unexpected analytic properties and interesting relations to the theory of dynamical systems, statistical mechanics, and the spectral theory of certain operators (transfer operators). The first part of this monograph presents a general introduction to this subject. The second part is a detailed study of the zeta functions.
Number theory, spectral geometry, and fractal geometry are interlinked in this study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. The Riemann hypothesis is given a natural geometric reformulation in context of vibrating fractal strings, and the book offers explicit formulas extended to apply to the geometric, spectral and dynamic zeta functions associated with a fractal.
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.
Volumes 1A and 1B.These volumes give a comprehensive survey of dynamics written by specialists in the various subfields of dynamical systems. The presentation attains coherence through a major introductory survey by the editors that organizes the entire subject, and by ample cross-references between individual surveys.The volumes are a valuable resource for dynamicists seeking to acquaint themselves with other specialties in the field, and to mathematicians active in other branches of mathematics who wish to learn about contemporary ideas and results dynamics. Assuming only general mathematical knowledge the surveys lead the reader towards the current state of research in dynamics.Volume 1B will appear 2005.
Reissued in the Cambridge Mathematical Library this classic book outlines the theory of thermodynamic formalism which was developed to describe the properties of certain physical systems consisting of a large number of subunits. It is aimed at mathematicians interested in ergodic theory, topological dynamics, constructive quantum field theory, the study of certain differentiable dynamical systems, notably Anosov diffeomorphisms and flows. It is also of interest to theoretical physicists concerned with the conceptual basis of equilibrium statistical mechanics. The level of the presentation is generally advanced, the objective being to provide an efficient research tool and a text for use in graduate teaching. Background material on mathematics has been collected in appendices to help the reader. Extra material is given in the form of updates of problems that were open at the original time of writing and as a new preface specially written for this new edition by the author.
Quantum maps are presented with special emphasis on their physical origin. They represent a testing ground for understanding concepts in quantized chaotic systems. The book teaches the modern mathematical methods from analytic and algebraic number theory as applied to quantum maps. It gives a broad and in-depth overview of the mathematical problems arising in this area. Also treated are the numerical aspects in quantum chaos such as eigenvalue and eigenfunctions computations for chaotic quantum systems. The book addresses scientists and advanced students in mathematics and mathematical physics.