Download Free Dynamic Response And Failure Of Composite Materials Book in PDF and EPUB Free Download. You can read online Dynamic Response And Failure Of Composite Materials and write the review.

Dynamic Response and Failure of Composite Materials and Structures presents an overview of recent developments in a specialized area of research with original contributions from the authors who have been asked to outline needs for further investigations in their chosen topic area. The result is a presentation of the current state-of-the art in very specialized research areas that cannot be found elsewhere in the literature. For example, Massabò presents a newly developed theory for laminated composite plates that accounts for imperfect bonding between layers with new solutions for problems involving thermal effects. This theory is new and computationally-efficient, and the author describes how it fits in the broader context of composite plate theory. Abrate discusses the design of composite marine propellers and presents a detailed derivation of the equations of motion of a rotating blade, including centrifugal effects and the effects of pre-twisting and other geometric parameters. This book is a major reference resource for academic and industrial researchers and designers working in aerospace, automotives, and the marine engineering industry. - Presents recent developments in a research field that has experienced tremendous advances because of improved computational capabilities, new materials, and new testing facilities - Includes contributions from leading researchers from Europe and the USA who present the current state-of-the-art, including unique and original research - Provides extensive experimental results and numerical solutions - Appeals to a broad range of professional researchers working in aerospace, automotive, and marine engineering fields
This book presents a broad view of the current state of the art regarding the dynamic response of composite and sandwich structures subjected to impacts and explosions. Each chapter combines a thorough assessment of the literature with original contributions made by the authors. The first section deals with fluid-structure interactions in marine structures. The first chapter focuses on hull slamming and particularly cases in which the deformation of the structure affects the motion of the fluid during the water entry of flexible hulls. Chapter 2 presents an extensive series of tests underwater and in the air to determine the effects of explosions on composite and sandwich structures. Full-scale structures were subjected to significant explosive charges, and such results are extremely rare in the open literature. Chapter 3 describes a simple geometrical theory of diffraction for describing the interaction of an underwater blast wave with submerged structures. The second section addresses the problem of impact on laminated composite structures with chapters devoted to ballistic impacts on pre-stressed composite structures, tests developed to simulate dynamic failure in marine structures, damage mechanisms and energy absorption in low velocity impacts, perforation, the numerical simulation of intra and inter-ply damage during impact, and hail impact on laminated composites. Sandwich structures with laminated facings are considered in Section 3 with chapters dealing with the discrete modeling of honeycomb core during the indentation of sandwich structures, the behavior of fold core sandwich structures during impact, and impact on helicopter blades. The fourth section consists of two chapters presenting experimental results and numerical simulation of composite structures subjected to crash. This volume is intended for advanced undergraduate and graduate students, researchers, and engineers interested and involved in analysis and design of composite structures.
Dynamic Failure of Materials and Structures discusses the topic of dynamic loadings and their effect on material and structural failure. Since dynamic loading problems are very difficult as compared to their static counterpart, very little information is currently available about dynamic behavior of materials and structures. Topics covered include the response of both metallic as well as polymeric composite materials to blast loading and shock loadings, impact loadings and failure of novel materials under more controlled dynamic loads. These include response of soft materials that are important in practical use but have very limited information available on their dynamic response. Dynamic fragmentation, which has re-emerged in recent years has also been included. Both experimental as well as numerical aspects of material and structural response to dynamic loads are discussed. Written by several key experts in the field, Dynamic Failure of Materials and Structures will appeal to graduate students and researchers studying dynamic loadings within mechanical and civil engineering, as well as in physics and materials science.
Damage Modeling of Composite Structures: Strength, Fracture, and Finite Element Analysis provides readers with a fundamental overview of the mechanics of composite materials, along with an outline of an array of modeling and numerical techniques used to analyze damage, failure mechanisms and safety tolerance. Strength prediction and finite element analysis of laminated composite structures are both covered, as are modeling techniques for delaminated composites under compression and shear. Viscoelastic cohesive/friction coupled model and finite element analysis for delamination analysis of composites under shear and for laminates under low-velocity impact are all covered at length. A concluding chapter discusses multiscale damage models and finite element analysis of composite structures. Integrates intralaminar damage and interlaminar delamination under different load patterns, covering intralaminar damage constitutive models, failure criteria, damage evolution laws, and virtual crack closure techniques Discusses numerical techniques for progressive failure analysis and modeling, as well as numerical convergence and mesh sensitivity, thus allowing for more accurate modeling Features models and methods that can be seamlessly extended to analyze failure mechanisms and safety tolerance of composites under more complex loads, and in more extreme environments Demonstrates applications of damage models and numerical methods
The advantages of composite materials include a high specific strength and stiffness, formability, and a comparative resistance to fatigue cracking and corrosion. However, not forsaking these advantages, composite materials are prone to a wide range of defects and damage that can significantly reduce the residual strength and stiffness of a structure or result in unfavorable load paths. Emphasizing defect identification and restitution, Defects and Damage in Composite Materials and Structures explains how defects and damage in composite materials and structures impact composite component performance. Providing ready access to an extensive, descriptive list of defects and damage types, this must-have reference: Examines defect criticality in composite structures Recommends repair actions to restore structural integrity Discusses failure modes and mechanisms of composites due to defects Reviews NDI processes for finding and identifying defects in composite materials Relating defect detection methods to defect type, the author merges his experience in the field of in-service activities for composite airframe maintenance and repair with indispensable reports and articles on defects and damage in advanced composite materials from the last 50 years.
Emphasizing fiber-matrix adhesion and its characterization in composite materials, reports results from applying the most commonly used test methods, such as fragmentation, pull-out, and indentation, to high-performance composites and their constituents. The 13 papers were presented at a symposium i
This book gathers the latest advances and innovations in the field of dynamic loads and testing of composite materials and sandwich structures, as presented by international researchers and engineers at the International Symposium on Dynamic Response and Failure of Composite Materials (DRAF), held in Ischia, Italy, on June 21–24, 2022. Contributions include a wide range of topics such as low and high velocity impacts, smart composites, hull slamming, shock and blast, hail and bird impact, damage resistance and tolerance, failure mechanisms, composite structures, delamination and fractures, progressive damage modeling, micromechanics, ballistic impacts, ceramic and CMC, auxetic materials and structures, additive manufacturing, crashworthiness, green composites, and structural health monitoring.
This study covers impact response, damage tolerance and failure of fibre-reinforced composite materials and structures. Materials development, analysis and prediction of structural behaviour and cost-effective design all have a bearing on the impact response of composites and this book brings together for the first time the most comprehensive and up-to-date research work from leading international experts. - State of the art analysis of impact response, damage tolerance and failure of FRC materials - Distinguished contributors provide expert analysis of the most recent materials and structures - Valuable tool for R&D engineers, materials scientists and designers
This monograph presents recent research findings on fracture properties and behavior of the composites, and their damage and cracking process under both quasi-static and impact loading conditions. Theoretical treatment, experimental investigation and numerical simulation aspects of the mechanics of composites, including sandwich structures are included.
Composites are used extensively in engineering applications. A constant concern is the effect of foreign object impacts on composite structures because significant damage can occur and yet be undetectable by visual inspection. Such impacts can range from the most ordinary at low velocity--a tool dropped on a product--to the hypervelocity impact of space debris on a spacecraft. This book explains how damage develops during impact, the effect of impact-induced damage on the mechanical behavior of structures, and methods of damage prediction and detection. Numerous examples are included to illustrate these topics. Written for graduate students, as well as researchers and practicing engineers working with composite materials, this book presents state-of-the-art knowledge on impact dynamics while requiring only basic understanding of the mechanics of composite materials.