Download Free Dynamic Resource Allocation And Optimization In Wireless Networks Book in PDF and EPUB Free Download. You can read online Dynamic Resource Allocation And Optimization In Wireless Networks and write the review.

Merging the fundamental principles of resource allocation with the state-of-the-art in research and application examples, Han and Liu present a novel and comprehensive perspective for improving wireless systems performance. Cross-layer multiuser optimization in wireless networks is described systematically. Starting from the basic principles, such as power control and multiple access, coverage moves to the optimization techniques for resource allocation, including formulation and analysis, and game theory. Advanced topics such as dynamic resource allocation and resource allocation in antenna array processing, and in cooperative, sensor, personal area, and ultrawideband networks, are then discussed. Unique in its scope, timeliness, and innovative author insights, this invaluable work will help graduate students and researchers to understand the basics of wireless resource allocation whilst highlighting modern research topics, and will help industrial engineers to improve system optimization.
Information flow in a telecommunication network is accomplished through the interaction of mechanisms at various design layers with the end goal of supporting the information exchange needs of the applications. In wireless networks in particular, the different layers interact in a nontrivial manner in order to support information transfer. In this text we will present abstract models that capture the cross-layer interaction from the physical to transport layer in wireless network architectures including cellular, ad-hoc and sensor networks as well as hybrid wireless-wireline. The model allows for arbitrary network topologies as well as traffic forwarding modes, including datagrams and virtual circuits. Furthermore the time varying nature of a wireless network, due either to fading channels or to changing connectivity due to mobility, is adequately captured in our model to allow for state dependent network control policies. Quantitative performance measures that capture the quality of service requirements in these systems depending on the supported applications are discussed, including throughput maximization, energy consumption minimization, rate utility function maximization as well as general performance functionals. Cross-layer control algorithms with optimal or suboptimal performance with respect to the above measures are presented and analyzed. A detailed exposition of the related analysis and design techniques is provided.
Network Optimization and Control is the ideal starting point for a mature reader with little background on the subject of congestion control to understand the basic concepts underlying network resource allocation.
This book allows readers to gain an in-depth understanding of resource allocation problems in wireless networks and the techniques used to solve them.
Machine Learning Approach for Cloud Data Analytics in IoT The book covers the multidimensional perspective of machine learning through the perspective of cloud computing and Internet of Things ranging from fundamentals to advanced applications Sustainable computing paradigms like cloud and fog are capable of handling issues related to performance, storage and processing, maintenance, security, efficiency, integration, cost, energy and latency in an expeditious manner. In order to expedite decision-making involved in the complex computation and processing of collected data, IoT devices are connected to the cloud or fog environment. Since machine learning as a service provides the best support in business intelligence, organizations have been making significant investments in this technology. Machine Learning Approach for Cloud Data Analytics in IoT elucidates some of the best practices and their respective outcomes in cloud and fog computing environments. It focuses on all the various research issues related to big data storage and analysis, large-scale data processing, knowledge discovery and knowledge management, computational intelligence, data security and privacy, data representation and visualization, and data analytics. The featured technologies presented in the book optimizes various industry processes using business intelligence in engineering and technology. Light is also shed on cloud-based embedded software development practices to integrate complex machines so as to increase productivity and reduce operational costs. The various practices of data science and analytics which are used in all sectors to understand big data and analyze massive data patterns are also detailed in the book.
This book gathers the latest research findings on emerging trends in 5G and beyond wireless systems. The authors present and assess different enabling technologies, capabilities, and anticipated communications and computing solutions for 5G and beyond. Topics discussed include new frequency bands, new multiple antenna systems, massive D2D connectivity, new network deployment, and more. These discussions help the readers to understand more advanced research materials for developing new ideas to make a contribution in this field for themselves. This book aims to serve as a virtual and effective bridge between academic research in theory and engineering development in practice. Students, professional, and practitioners who seek to learn the latest development in wireless technologies should find interest in this book.
The first book on Cloud Radio Access Networks (C-RANs), covering fundamental theory, current techniques, and potential applications.
A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.
Cross-Layer Resource Allocation in Wireless Communications offers practical techniques and models for the design and optimisation of cross-layer resource allocation – one of the hottest topics in wireless communications. Resource allocation in wireless networks is traditionally approached either through information theory or communications networks. To break down the barriers between these distinct approaches, this book bridges the physical and network layers by providing cross-layer resource allocation techniques, models, and methodologies. Its unique approach allows optimisation of network resources and will enable engineers to improve signal quality, enhance network and spectrum utilization, increase throughput, and solve the problem of shadowing. Topics covered include different views of spectral efficiency, the role of spatial diversity, of delay in resource allocation, and possible extensions to OFDMA systems. This will be an ideal reference on cross-layer resource allocation between the PHY and MAC layers for R&D and network design engineers and researchers in universities dealing with sensor networks and cognitive systems. - Gives a full description of the characteristics of the PHY layer that promote efficient resource allocation strategies - Gives special emphasis on cross-layer design for spatial diversity schemes - Provides a framework for interaction between the PHY and MAC layers, their parameters of performance and their relationship - Presents resource allocation as a cross-layer design based on an optimization of MAC layer parameters with an accurate model of the PHY layer
This SpringerBrief presents research results on QoE management schemes for mobile services, including user services, and resource allocation. Along with a review of the research literature, it offers a data-driven architecture for personalized QoE management in wireless networks. The primary focus is on introducing efficient personalized character extraction mechanisms, e.g., context-aware Bayesian graph model, and cooperative QoE management mechanisms. Moreover, in order to demonstrate in the effectiveness of the QoE model, a QoE measurement platform is described and its collected data examined. The brief concludes with a discussion of future research directions. The example mechanisms and the data-driven architecture provide useful insights into the designs of QoE management, and motivate a new line of thinking for users' satisfaction in future wireless networks.