Download Free Dynamic Pronunciation Models For Automatic Speech Recognition Book in PDF and EPUB Free Download. You can read online Dynamic Pronunciation Models For Automatic Speech Recognition and write the review.

Continued progress in Speech Technology in the face of ever-increasing demands on the performance levels of applications is a challenge to the whole speech and language science community. Robust recognition and understanding of spontaneous speech in varied environments, good comprehensibility and naturalness of expressive speech synthesis are goals that cannot be achieved without a change of paradigm. This book argues for interdisciplinary communication and cooperation in problem-solving in general, and discusses the interaction between speech and language engineering and phonetics in particular. With a number of reports on innovative speech technology research as well as more theoretical discussions, it addresses the practical, scientific and sometimes the philosophical problems that stand in the way of cross-disciplinary collaboration and illuminates some of the many possible ways forward. Audience: Researchers and professionals in speech technology and computational linguists.
Speech dynamics refer to the temporal characteristics in all stages of the human speech communication process. This speech “chain” starts with the formation of a linguistic message in a speaker's brain and ends with the arrival of the message in a listener's brain. Given the intricacy of the dynamic speech process and its fundamental importance in human communication, this monograph is intended to provide a comprehensive material on mathematical models of speech dynamics and to address the following issues: How do we make sense of the complex speech process in terms of its functional role of speech communication? How do we quantify the special role of speech timing? How do the dynamics relate to the variability of speech that has often been said to seriously hamper automatic speech recognition? How do we put the dynamic process of speech into a quantitative form to enable detailed analyses? And finally, how can we incorporate the knowledge of speech dynamics into computerized speech analysis and recognition algorithms? The answers to all these questions require building and applying computational models for the dynamic speech process. What are the compelling reasons for carrying out dynamic speech modeling? We provide the answer in two related aspects. First, scientific inquiry into the human speech code has been relentlessly pursued for several decades. As an essential carrier of human intelligence and knowledge, speech is the most natural form of human communication. Embedded in the speech code are linguistic (as well as para-linguistic) messages, which are conveyed through four levels of the speech chain. Underlying the robust encoding and transmission of the linguistic messages are the speech dynamics at all the four levels. Mathematical modeling of speech dynamics provides an effective tool in the scientific methods of studying the speech chain. Such scientific studies help understand why humans speak as they do and how humans exploit redundancy and variability by way of multitiered dynamic processes to enhance the efficiency and effectiveness of human speech communication. Second, advancement of human language technology, especially that in automatic recognition of natural-style human speech is also expected to benefit from comprehensive computational modeling of speech dynamics. The limitations of current speech recognition technology are serious and are well known. A commonly acknowledged and frequently discussed weakness of the statistical model underlying current speech recognition technology is the lack of adequate dynamic modeling schemes to provide correlation structure across the temporal speech observation sequence. Unfortunately, due to a variety of reasons, the majority of current research activities in this area favor only incremental modifications and improvements to the existing HMM-based state-of-the-art. For example, while the dynamic and correlation modeling is known to be an important topic, most of the systems nevertheless employ only an ultra-weak form of speech dynamics; e.g., differential or delta parameters. Strong-form dynamic speech modeling, which is the focus of this monograph, may serve as an ultimate solution to this problem. After the introduction chapter, the main body of this monograph consists of four chapters. They cover various aspects of theory, algorithms, and applications of dynamic speech models, and provide a comprehensive survey of the research work in this area spanning over past 20~years. This monograph is intended as advanced materials of speech and signal processing for graudate-level teaching, for professionals and engineering practioners, as well as for seasoned researchers and engineers specialized in speech processing
The idea that speech is a dynamic process is a tautology: whether from the standpoint of the talker, the listener, or the engineer, speech is an action, a sound, or a signal continuously changing in time. Yet, because phonetics and speech science are offspring of classical phonology, speech has been viewed as a sequence of discrete events-positions of the articulatory apparatus, waveform segments, and phonemes. Although this perspective has been mockingly referred to as "beads on a string", from the time of Henry Sweet's 19th century treatise almost up to our days specialists of speech science and speech technology have continued to conceptualize the speech signal as a sequence of static states interleaved with transitional elements reflecting the quasi-continuous nature of vocal production. This book, a collection of papers of which each looks at speech as a dynamic process and highlights one of its particularities, is dedicated to the memory of Ludmilla Andreevna Chistovich. At the outset, it was planned to be a Chistovich festschrift but, sadly, she passed away a few months before the book went to press. The 24 chapters of this volume testify to the enormous influence that she and her colleagues have had over the four decades since the publication of their 1965 monograph.
Research in the field of automatic speech and speaker recognition has made a number of significant advances in the last two decades, influenced by advances in signal processing, algorithms, architectures, and hardware. These advances include: the adoption of a statistical pattern recognition paradigm; the use of the hidden Markov modeling framework to characterize both the spectral and the temporal variations in the speech signal; the use of a large set of speech utterance examples from a large population of speakers to train the hidden Markov models of some fundamental speech units; the organization of speech and language knowledge sources into a structural finite state network; and the use of dynamic, programming based heuristic search methods to find the best word sequence in the lexical network corresponding to the spoken utterance. Automatic Speech and Speaker Recognition: Advanced Topics groups together in a single volume a number of important topics on speech and speaker recognition, topics which are of fundamental importance, but not yet covered in detail in existing textbooks. Although no explicit partition is given, the book is divided into five parts: Chapters 1-2 are devoted to technology overviews; Chapters 3-12 discuss acoustic modeling of fundamental speech units and lexical modeling of words and pronunciations; Chapters 13-15 address the issues related to flexibility and robustness; Chapter 16-18 concern the theoretical and practical issues of search; Chapters 19-20 give two examples of algorithm and implementational aspects for recognition system realization. Audience: A reference book for speech researchers and graduate students interested in pursuing potential research on the topic. May also be used as a text for advanced courses on the subject.
Continued progress in Speech Technology in the face of ever-increasing demands on the performance levels of applications is a challenge to the whole speech and language science community. Robust recognition and understanding of spontaneous speech in varied environments, good comprehensibility and naturalness of expressive speech synthesis are goals that cannot be achieved without a change of paradigm. This book argues for interdisciplinary communication and cooperation in problem-solving in general, and discusses the interaction between speech and language engineering and phonetics in particular. With a number of reports on innovative speech technology research as well as more theoretical discussions, it addresses the practical, scientific and sometimes the philosophical problems that stand in the way of cross-disciplinary collaboration and illuminates some of the many possible ways forward. Audience: Researchers and professionals in speech technology and computational linguists.
Robust Speech Recognition in Embedded Systems and PC Applications provides a link between the technology and the application worlds. As speech recognition technology is now good enough for a number of applications and the core technology is well established around hidden Markov models many of the differences between systems found in the field are related to implementation variants. We distinguish between embedded systems and PC-based applications. Embedded applications are usually cost sensitive and require very simple and optimized methods to be viable. Robust Speech Recognition in Embedded Systems and PC Applications reviews the problems of robust speech recognition, summarizes the current state of the art of robust speech recognition while providing some perspectives, and goes over the complementary technologies that are necessary to build an application, such as dialog and user interface technologies. Robust Speech Recognition in Embedded Systems and PC Applications is divided into five chapters. The first one reviews the main difficulties encountered in automatic speech recognition when the type of communication is unknown. The second chapter focuses on environment-independent/adaptive speech recognition approaches and on the mainstream methods applicable to noise robust speech recognition. The third chapter discusses several critical technologies that contribute to making an application usable. It also provides some design recommendations on how to design prompts, generate user feedback and develop speech user interfaces. The fourth chapter reviews several techniques that are particularly useful for embedded systems or to decrease computational complexity. It also presents some case studies for embedded applications and PC-based systems. Finally, the fifth chapter provides a future outlook for robust speech recognition, emphasizing the areas that the author sees as the most promising for the future. Robust Speech Recognition in Embedded Systems and PC Applications serves as a valuable reference and although not intended as a formal University textbook, contains some material that can be used for a course at the graduate or undergraduate level. It is a good complement for the book entitled Robustness in Automatic Speech Recognition: Fundamentals and Applications co-authored by the same author.
This handbook plays a fundamental role in sustainable progress in speech research and development. With an accessible format and with accompanying DVD-Rom, it targets three categories of readers: graduate students, professors and active researchers in academia, and engineers in industry who need to understand or implement some specific algorithms for their speech-related products. It is a superb source of application-oriented, authoritative and comprehensive information about these technologies, this work combines the established knowledge derived from research in such fast evolving disciplines as Signal Processing and Communications, Acoustics, Computer Science and Linguistics.
Speech and language technologies continue to grow in importance as they are used to create natural and efficient interfaces between people and machines, and to automatically transcribe, extract, analyze, and route information from high-volume streams of spoken and written information. The workshops on Mathematical Foundations of Speech Processing and Natural Language Modeling were held in the Fall of 2000 at the University of Minnesota's NSF-sponsored Institute for Mathematics and Its Applications, as part of a "Mathematics in Multimedia" year-long program. Each workshop brought together researchers in the respective technologies on the one hand, and mathematicians and statisticians on the other hand, for an intensive week of cross-fertilization. There is a long history of benefit from introducing mathematical techniques and ideas to speech and language technologies. Examples include the source-channel paradigm, hidden Markov models, decision trees, exponential models and formal languages theory. It is likely that new mathematical techniques, or novel applications of existing techniques, will once again prove pivotal for moving the field forward. This volume consists of original contributions presented by participants during the two workshops. Topics include language modeling, prosody, acoustic-phonetic modeling, and statistical methodology.