Download Free Dynamic Programming And Variational Inequalities In Singular Stochastic Control Book in PDF and EPUB Free Download. You can read online Dynamic Programming And Variational Inequalities In Singular Stochastic Control and write the review.

As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.
The main purpose of the book is to show how a viscosity approach can be used to tackle control problems in insurance. The problems covered are the maximization of survival probability as well as the maximization of dividends in the classical collective risk model. The authors consider the possibility of controlling the risk process by reinsurance as well as by investments. They show that optimal value functions are characterized as either the unique or the smallest viscosity solution of the associated Hamilton-Jacobi-Bellman equation; they also study the structure of the optimal strategies and show how to find them. The viscosity approach was widely used in control problems related to mathematical finance but until quite recently it was not used to solve control problems related to actuarial mathematical science. This book is designed to familiarize the reader on how to use this approach. The intended audience is graduate students as well as researchers in this area.
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.
Here is a rigorous introduction to the most important and useful solution methods of various types of stochastic control problems for jump diffusions and its applications. Discussion includes the dynamic programming method and the maximum principle method, and their relationship. The text emphasises real-world applications, primarily in finance. Results are illustrated by examples, with end-of-chapter exercises including complete solutions. The 2nd edition adds a chapter on optimal control of stochastic partial differential equations driven by Lévy processes, and a new section on optimal stopping with delayed information. Basic knowledge of stochastic analysis, measure theory and partial differential equations is assumed.
This volume contains more than sixty invited papers of international wellknown scientists in the fields where Alain Bensoussan's contributions have been particularly important: filtering and control of stochastic systems, variationnal problems, applications to economy and finance, numerical analysis... In particular, the extended texts of the lectures of Professors Jens Frehse, Hitashi Ishii, Jacques-Louis Lions, Sanjoy Mitter, Umberto Mosco, Bernt Oksendal, George Papanicolaou, A. Shiryaev, given in the Conference held in Paris on December 4th, 2000 in honor of Professor Alain Bensoussan are included.
The first part of this book discusses institutions and mechanisms of algorithmic trading, market microstructure, high-frequency data and stylized facts, time and event aggregation, order book dynamics, trading strategies and algorithms, transaction costs, market impact and execution strategies, risk analysis, and management. The second part covers market impact models, network models, multi-asset trading, machine learning techniques, and nonlinear filtering. The third part discusses electronic market making, liquidity, systemic risk, recent developments and debates on the subject.
This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.
The material collected in this volume reflects the active present of this area of mathematics, ranging from the abstract theory of gradient flows to stochastic representations of non-linear parabolic PDE's.Articles will highlight the present as well as expected future directions of development of the field with particular emphasis on applications. The article by Ambrosio and Savaré discussesthe most recent development in the theory of gradient flow of probability measures. After an introduction reviewing the properties of the Wasserstein space and corresponding subdifferential calculus, applications are given to evolutionarypartial differential equations. The contribution of Herrero provides a description of some mathematical approaches developed to account for quantitative as well as qualitative aspects of chemotaxis. Particular attention is paid to the limits of cell'scapability to measure external cues on the one hand, and to provide an overall description of aggregation models for the slim mold Dictyostelium discoideum on the other.The chapter written by Masmoudi deals with a rather different topic - examples of singular limits in hydrodynamics. This is nowadays a well-studied issue given the amount of new results based on the development of the existence theory for rather general systems of equations in hydrodynamics. The paper by DeLellis addreses the most recent results for the transport equations with regard to possible applications in the theory of hyperbolic systems of conservation laws. Emphasis is put on the development of the theory in the case when the governing field is only a BV function.The chapter by Rein represents a comprehensive survey of results on the Poisson-Vlasov system in astrophysics. The question of global stability of steady states is addressed in detail. The contribution of Soner is devoted to different representations of non-linear parabolic equations in terms of Markov processes. After a brief introduction on the linear theory, a class ofnon-linear equations is investigated, with applications to stochastic control and differential games.The chapter written by Zuazua presents some of the recent progresses done on the problem of controllabilty of partial differential equations. The applications include the linear wave and heat equations,parabolic equations with coefficients of low regularity, and some fluid-structure interaction models.- Volume 1 focuses on the abstract theory of evolution- Volume 2 considers more concrete probelms relating to specific applications- Volume 3 reflects the active present of this area of mathematics, ranging from the abstract theory of gradient flows to stochastic representations of non-linear PDEs