Download Free Dynamic Programming And Modern Control Theory Book in PDF and EPUB Free Download. You can read online Dynamic Programming And Modern Control Theory and write the review.

Modern Control Engineering focuses on the methodologies, principles, approaches, and technologies employed in modern control engineering, including dynamic programming, boundary iterations, and linear state equations. The publication fist ponders on state representation of dynamical systems and finite dimensional optimization. Discussions focus on optimal control of dynamical discrete-time systems, parameterization of dynamical control problems, conjugate direction methods, convexity and sufficiency, linear state equations, transition matrix, and stability of discrete-time linear systems. The text then tackles infinite dimensional optimization, including computations with inequality constraints, gradient method in function space, quasilinearization, computation of optimal control-direct and indirect methods, and boundary iterations. The book takes a look at dynamic programming and introductory stochastic estimation and control. Topics include deterministic multivariable observers, stochastic feedback control, stochastic linear-quadratic control problem, general calculation of optimal control by dynamic programming, and results for linear multivariable digital control systems. The publication is a dependable reference material for engineers and researchers wanting to explore modern control engineering.
Well-written, practice-oriented textbook, and compact textbook Presents the contemporary state of the art of control theory and its applications Introduces traditional problems that are useful in the automatic control of technical processes, plus presents current issues of control Explains methods can be easily applied for the determination of the decision algorithms in computer control and management systems
Upper-level undergraduate text introduces aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization. Numerous figures, tables. Solution guide available upon request. 1970 edition.
About the book... The book provides an integrated treatment of continuous-time and discrete-time systems for two courses at postgraduate level, or one course at undergraduate and one course at postgraduate level. It covers mainly two areas of modern control theory, namely; system theory, and multivariable and optimal control. The coverage of the former is quite exhaustive while that of latter is adequate with significant provision of the necessary topics that enables a research student to comprehend various technical papers. The stress is on interdisciplinary nature of the subject. Practical control problems from various engineering disciplines have been drawn to illustrate the potential concepts. Most of the theoretical results have been presented in a manner suitable for digital computer programming along with the necessary algorithms for numerical computations.
This is the leading and most up-to-date textbook on the far-ranging algorithmic methodology of Dynamic Programming, which can be used for optimal control, Markovian decision problems, planning and sequential decision making under uncertainty, and discrete/combinatorial optimization. The treatment focuses on basic unifying themes, and conceptual foundations. It illustrates the versatility, power, and generality of the method with many examples and applications from engineering, operations research, and other fields. It also addresses extensively the practical application of the methodology, possibly through the use of approximations, and provides an extensive treatment of the far-reaching methodology of Neuro-Dynamic Programming/Reinforcement Learning. Among its special features, the book 1) provides a unifying framework for sequential decision making, 2) treats simultaneously deterministic and stochastic control problems popular in modern control theory and Markovian decision popular in operations research, 3) develops the theory of deterministic optimal control problems including the Pontryagin Minimum Principle, 4) introduces recent suboptimal control and simulation-based approximation techniques (neuro-dynamic programming), which allow the practical application of dynamic programming to complex problems that involve the dual curse of large dimension and lack of an accurate mathematical model, 5) provides a comprehensive treatment of infinite horizon problems in the second volume, and an introductory treatment in the first volume.