Download Free Dynamic Process Modeling Book in PDF and EPUB Free Download. You can read online Dynamic Process Modeling and write the review.

Inspired by the leading authority in the field, the Centre for Process Systems Engineering at Imperial College London, this book includes theoretical developments, algorithms, methodologies and tools in process systems engineering and applications from the chemical, energy, molecular, biomedical and other areas. It spans a whole range of length scales seen in manufacturing industries, from molecular and nanoscale phenomena to enterprise-wide optimization and control. As such, this will appeal to a broad readership, since the topic applies not only to all technical processes but also due to the interdisciplinary expertise required to solve the challenge. The ultimate reference work for years to come.
This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.
This book presents a methodology for the development and computer implementation of dynamic models for transport process systems. Rather than developing the general equations of transport phenomena, it develops the equations required specifically for each new example application. These equations are generally of two types: ordinary differential equations (ODEs) and partial differential equations (PDEs) for which time is an independent variable. The computer-based methodology presented is general purpose and can be applied to most applications requiring the numerical integration of initial-value ODEs/PDEs. A set of approximately two hundred applications of ODEs and PDEs developed by the authors are listed in Appendix 8.
Dynamic Modeling introduces an approach to modeling that makes it a more practical, intuitive endeavour. The book enables readers to convert their understanding of a phenomenon to a computer model, and then to run the model and let it yield the inevitable dynamic consequences built into the structure of the model. Part I provides an introduction to modeling dynamic systems, while Part II offers general methods for modeling. Parts III through to VIII then apply these methods to model real-world phenomena from chemistry, genetics, ecology, economics, and engineering. To develop and execute dynamic simulation models, Dynamic Modeling comes with STELLA II run- time software for Windows-based computers, as well as computer files of sample models used in the book. A clear, approachable introduction to the modeling process, of interest in any field where real problems can be illuminated by computer simulation.
Process Modelling and Model Analysis describes the use of models in process engineering. Process engineering is all about manufacturing--of just about anything! To manage processing and manufacturing systematically, the engineer has to bring together many different techniques and analyses of the interaction between various aspects of the process. For example, process engineers would apply models to perform feasibility analyses of novel process designs, assess environmental impact, and detect potential hazards or accidents. To manage complex systems and enable process design, the behavior of systems is reduced to simple mathematical forms. This book provides a systematic approach to the mathematical development of process models and explains how to analyze those models. Additionally, there is a comprehensive bibliography for further reading, a question and answer section, and an accompanying Web site developed by the authors with additional data and exercises. - Introduces a structured modeling methodology emphasizing the importance of the modeling goal and including key steps such as model verification, calibration, and validation - Focuses on novel and advanced modeling techniques such as discrete, hybrid, hierarchical, and empirical modeling - Illustrates the notions, tools, and techniques of process modeling with examples and advances applications
Suitable as a text for Chemical Process Dynamics or Introductory Chemical Process Control courses at the junior/senior level. This book aims to provide an introduction to the modeling, analysis, and simulation of the dynamic behavior of chemical processes.
Modelling is a tool used by savvy business managers to understand the processes of their business and to estimate the impact of changes. Dynamic Modelling for Business Management applies dynamic modelling to business management, using accessible modelling techniques that are demonstrated starting with fundamental processes and advancing to more complex business models. Discussions of modelling emphasize its practical use for decision making and implementing change for measurable results. Readers will learn about both manufacturing and service-oriented business processes using hands-on lessons. Then will then be able to manipulate additional models to try out their knowledge and address issues specific to their own businesses and interests. Some of the topics covered include workflow management, supply-chain-management, and strategy.
This text offers a modern view of process control in the context of today's technology. It provides the standard material in a coherent presentation and uses a notation that is more consistent with the research literature in process control. Topics that are unique include a unified approach to model representations, process model formation and process identification, multivariable control, statistical quality control, and model-based control. This book is designed to be used as an introductory text for undergraduate courses in process dynamics and control. In addition to chemical engineering courses, the text would also be suitable for such courses taught in mechanical, nuclear, industrial, and metallurgical engineering departments. The material is organized so that modern concepts are presented to the student but details of the most advanced material are left to later chapters. The text material has been developed, refined, and classroom tested over the last 10-15 years at the University of Wisconsin and more recently at the University of Delaware. As part of the course at Wisconsin, a laboratory has been developed to allow the students hands-on experience with measurement instruments, real time computers, and experimental process dynamics and control problems.
From controlling disease outbreaks to predicting heart attacks, dynamic models are increasingly crucial for understanding biological processes. Many universities are starting undergraduate programs in computational biology to introduce students to this rapidly growing field. In Dynamic Models in Biology, the first text on dynamic models specifically written for undergraduate students in the biological sciences, ecologist Stephen Ellner and mathematician John Guckenheimer teach students how to understand, build, and use dynamic models in biology. Developed from a course taught by Ellner and Guckenheimer at Cornell University, the book is organized around biological applications, with mathematics and computing developed through case studies at the molecular, cellular, and population levels. The authors cover both simple analytic models--the sort usually found in mathematical biology texts--and the complex computational models now used by both biologists and mathematicians. Linked to a Web site with computer-lab materials and exercises, Dynamic Models in Biology is a major new introduction to dynamic models for students in the biological sciences, mathematics, and engineering.
A typical design procedure for model predictive control or control performance monitoring consists of: 1. identification of a parametric or nonparametric model; 2. derivation of the output predictor from the model; 3. design of the control law or calculation of performance indices according to the predictor. Both design problems need an explicit model form and both require this three-step design procedure. Can this design procedure be simplified? Can an explicit model be avoided? With these questions in mind, the authors eliminate the first and second step of the above design procedure, a “data-driven” approach in the sense that no traditional parametric models are used; hence, the intermediate subspace matrices, which are obtained from the process data and otherwise identified as a first step in the subspace identification methods, are used directly for the designs. Without using an explicit model, the design procedure is simplified and the modelling error caused by parameterization is eliminated.