Download Free Dynamic Networks And Evolutionary Variational Inequalities Book in PDF and EPUB Free Download. You can read online Dynamic Networks And Evolutionary Variational Inequalities and write the review.

'Since the extraordinary impact of networks is self-evident today both in the field of telecommunications and transportation as well as in the field of economic and financial equilibria, the scientific work carried out by Patrizia Daniele appears as an outstanding resource. The author employs with uncommon competence mathematical topics that are at the forefront of the science, while at the same time enabling the reader to understand the matter treated without any difficulty. Moreover the reader is fascinated by the clarity, depth and soundness with which the evolutionary equilibria problems are studied and by the original efficient computational procedures which allow for the solving of many significant examples and concrete problems. Without any doubt the book represents a shining light and a necessary tool for scholars of pure and applied mathematics, for economists and engineers as well as for practitioners, general managers and managing directors.' - Antonino Maugeri, Università di Catania, Italy This book offers a comprehensive analysis of dynamic networks and evolutionary variational inequalities, a topic of growing prominence in the study of networks. The extraordinary importance of networks in finance, mathematics, computer science and other areas is well known but the relatively new concept of 'dynamic' networks is less well understood. They become dynamic when the constitutive elements of the phenomena associated with the fixed geometry of networks are considered to be evolving over time. Patrizia Daniele offers many numerical examples to illustrate the issues discussed and provides a broad appendix to enrich this challenging but deeply informative book.
As Richard Bellman has so elegantly stated at the Second International Conference on General Inequalities (Oberwolfach, 1978), “There are three reasons for the study of inequalities: practical, theoretical, and aesthetic.” On the aesthetic aspects, he said, “As has been pointed out, beauty is in the eye of the beholder. However, it is generally agreed that certain pieces of music, art, or mathematics are beautiful. There is an elegance to inequalities that makes them very attractive.” The content of the Handbook focuses mainly on both old and recent developments on approximate homomorphisms, on a relation between the Hardy–Hilbert and the Gabriel inequality, generalized Hardy–Hilbert type inequalities on multiple weighted Orlicz spaces, half-discrete Hilbert-type inequalities, on affine mappings, on contractive operators, on multiplicative Ostrowski and trapezoid inequalities, Ostrowski type inequalities for the Riemann–Stieltjes integral, means and related functional inequalities, Weighted Gini means, controlled additive relations, Szasz–Mirakyan operators, extremal problems in polynomials and entire functions, applications of functional equations to Dirichlet problem for doubly connected domains, nonlinear elliptic problems depending on parameters, on strongly convex functions, as well as applications to some new algorithms for solving general equilibrium problems, inequalities for the Fisher’s information measures, financial networks, mathematical models of mechanical fields in media with inclusions and holes.
This volume collects peer-reviewed short papers presented at the Optimization and Decision Science conference (ODS 2022) held in Florence (Italy) from August 30th to September 2nd, 2022, organized by the Global Optimization Laboratory within the University of Florence and AIRO (the Italian Association for Operations Research). The book includes contributions in the fields of operations research, optimization, problem solving, decision making and their applications in the most diverse domains. Moreover, a special focus is set on the challenging theme Operations Research: inclusion and equity. The work offers 30 contributions, covering a wide spectrum of methodologies and applications. Specifically, they feature the following topics: (i) Variational Inequalities, Equilibria and Games, (ii) Optimization and Machine Learning, (iii) Global Optimization, (iv) Optimization under Uncertainty, (v) Combinatorial Optimization, (vi) Transportation and Mobility, (vii) Health Care Management, and (viii) Applications. This book is primarily addressed to researchers and PhD students of the operations research community. However, due to its interdisciplinary content, it will be of high interest for other closely related research communities.
The chapters in this volume, written by international experts from different fields of mathematics, are devoted to honoring George Isac, a renowned mathematician. These contributions focus on recent developments in complementarity theory, variational principles, stability theory of functional equations, nonsmooth optimization, and several other important topics at the forefront of nonlinear analysis and optimization.
This book presents advanced research in a relatively new field of scholarly inquiry that is usually referred to as dynamic network user equilibrium, now almost universally abbreviated as DUE. It provides the first synthesis of results obtained over the last decade from applying the differential variational inequality (DVI) formalism to study the DUE problem. In particular, it explores the intimately related problem of dynamic network loading, which determines the arc flows and effective travel delays (or generalized travel costs) arising from the expression of departure rates at the origins of commuter trips between the workplace and home. In particular, the authors show that dynamic network loading with spillback of queues into upstream arcs may be formulated as a differential algebraic equation system. They demonstrate how the dynamic network loading problem and the dynamic traffic user equilibrium problem may be solved simultaneously rather than sequentially, as well as how the first-in-first-out queue discipline may be maintained for each when Lighthill-Whitham-Richardson traffic flow theory is used. A number of recent and new extensions of the DVI-based theory of DUE and corresponding examples are presented and discussed. Relevant mathematical background material is provided to make the book as accessible as possible.
Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena. This volume presents contributions by known experts and active researchers in economic and financial network modeling. Readers are provided with an understanding of the latest advances in network analysis as applied to economics, finance, corporate governance, and investments. Moreover, recent advances in market network analysis that focus on influential techniques for market graph analysis are also examined. Young researchers will find this volume particularly useful in facilitating their introduction to this new and fascinating field. Professionals in economics, financial management, various technologies, and network analysis, will find the network models presented in this book beneficial in analyzing the interconnectivity in modern economic systems.
New applications, research, and fundamental theories in nonlinear analysis are presented in this book. Each chapter provides a unique insight into a large domain of research focusing on functional equations, stability theory, approximation theory, inequalities, nonlinear functional analysis, and calculus of variations with applications to optimization theory. Topics include: Fixed point theory Fixed-circle theory Coupled fixed points Nonlinear duality in Banach spaces Jensen's integral inequality and applications Nonlinear differential equations Nonlinear integro-differential equations Quasiconvexity, Stability of a Cauchy-Jensen additive mapping Generalizations of metric spaces Hilbert-type integral inequality, Solitons Quadratic functional equations in fuzzy Banach spaces Asymptotic orbits in Hill’sproblem Time-domain electromagnetics Inertial Mann algorithms Mathematical modelling Robotics Graduate students and researchers will find this book helpful in comprehending current applications and developments in mathematical analysis. Research scientists and engineers studying essential modern methods and techniques to solve a variety of problems will find this book a valuable source filled with examples that illustrate concepts.
A unified treatment of the vulnerabilities that exist in real-world network systems—with tools to identify synergies for mergers and acquisitions Fragile Networks: Identifying Vulnerabilities and Synergies in an Uncertain World presents a comprehensive study of network systems and the roles these systems play in our everyday lives. This book successfully conceptualizes, defines, and constructs mathematically rigorous, computer-based tools for the assessment of network performance and efficiency, along with robustness and vulnerability analysis. The result is a thorough exploration that promotes an understanding of the critical infrastructure of today's network systems, from congested urban transportation networks and supply chain networks under disruption to financial networks and the Internet. The authors approach the analyses by abstracting not only topological structures of networks, but also the behavior of network users, the demand for resources, the resulting flows, and the associated costs. Following an introduction to the fundamental methodologies and tools required for network analysis and network vulnerability, the book is organized into three self-contained parts: Part I—Network Fundamentals, Efficiency Measurement, and Vulnerability Analysis explores the theoretical and practical foundations for a new network efficiency measure in order to assess the importance of network components in various network systems. Methodologies for distinct decision-making behaviors are outlined, along with the tools for qualitative analysis, the algorithms for the computation of solutions, and a thorough discussion of the unified network efficient measure and network robustness with the unified measure. Part II—Applications and Extensions examines the efficiency changes and the associated cost increments after network components are eliminated or partially damaged. A discussion of the recently established connections between transportation networks and different critical networks is provided, which demonstrates how the new network measures and robustness indices can be applied to different supply chain, financial, and dynamic networks, including the Internet and electronic power networks. Part III—Mergers and Acquisitions, Network Integration, and Synergies reveals the connections between transportation networks and different network systems and quantifies the synergies associated with the network systems, from total cost reduction to environmental impact assessment. In the case of mergers and acquisitions, the focus is on supply chain networks. The authors outline a system-optimization perspective for supply chain networks and also formalize coalition formation using game theory with insights into the merger paradox. With its numerous network examples and real-world applications, Fragile Networks: Identifying Vulnerabilities and Synergies in an Uncertain World is an excellent book for courses in network science, transportation science, operations management, and financial networks at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the areas of applied mathematics, computer science, operations research, management science, finance, and economics, as well as industrial, systems, and civil engineering. Listen to Dr. Nagurney's podcast Supernetworks: Building Better Real and Virtual Highways at http://www.scienceofbetter.org/podcast/ .
An international community of experts scientists comprise the research and survey contributions in this volume which covers a broad spectrum of areas in which analysis plays a central role. Contributions discuss theory and problems in real and complex analysis, functional analysis, approximation theory, operator theory, analytic inequalities, the Radon transform, nonlinear analysis, and various applications of interdisciplinary research; some are also devoted to specific applications such as the three-body problem, finite element analysis in fluid mechanics, algorithms for difference of monotone operators, a vibrational approach to a financial problem, and more. This volume is useful to graduate students and researchers working in mathematics, physics, engineering, and economics.
Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.