Download Free Dynamic Modulus Of Asphalt Mixtures For Development Of Korean Pavement Design Guide Book in PDF and EPUB Free Download. You can read online Dynamic Modulus Of Asphalt Mixtures For Development Of Korean Pavement Design Guide and write the review.

This paper presents the dynamic modulus of asphalt mixtures with granite aggregate which are highly common in Korea. Dynamic modulus was determined by the simplified master curve using test data covering a large range of temperatures from ?10°C to 55°C. Four different asphalt mixtures were evaluated in this paper. Four specimens were chosen to evaluate mixtures with two different aggregates (13 mm, 19 mm) except for two different asphalt binders(PG 58-22, PG 64-16). In addition, the mixture was controlled air void (2,4, 6%) and asphalt content based on optimum asphalt binder by a Superpavegyratory compactor. It adopts sigmoidal function and compressive dynamic modulus test data obtained at a matrix combination of different frequencies and test temperatures. The experimental dynamic modulus values were compared against modulus values obtained from the predictive equations proposed by NCHRP 1-37AMEPDG.
Functional Pavement Design is a collections of 186 papers from 27 different countries, which were presented at the 4th Chinese-European Workshops (CEW) on Functional Pavement Design (Delft, the Netherlands, 29 June-1 July 2016). The focus of the CEW series is on field tests, laboratory test methods and advanced analysis techniques, and cover analysis, material development and production, experimental characterization, design and construction of pavements. The main areas covered by the book include: - Flexible pavements - Pavement and bitumen - Pavement performance and LCCA - Pavement structures - Pavements and environment - Pavements and innovation - Rigid pavements - Safety - Traffic engineering Functional Pavement Design is for contributing to the establishment of a new generation of pavement design methodologies in which rational mechanics principles, advanced constitutive models and advanced material characterization techniques shall constitute the backbone of the design process. The book will be much of interest to professionals and academics in pavement engineering and related disciplines.
This research study aimed to determine the dynamic modulus, bending stiffness and fatigue properties of four representative Superpave Hot Mix Asphalt (HMA) mixtures used in the construction of base layers of Kansas flexible pavements and to compare the measured values with those predicted by the National Cooperative Highway Research Program (NCHRP) Design Guide. To achieve these objectives, asphalt concrete beams were tested in third point-bending at constant strain, at four temperatures and four levels of strain. Dynamic resilient modulus tests were performed on asphalt cylindrical specimens at five temperatures and five loading frequencies. Multi-linear regression analysis was performed to develop a linear relationship between the bending stiffness and the fatigue life for the asphalt mixes tested.
This project evaluated the procedures proposed by the Mechanistic-Empirical Pavement Design Guide (MEPDG) to characterize existing hot-mix asphalt (HMA) layers for rehabilitation purposes. Thirty-three cores were extracted from nine sites in Virginia to measure their dynamic moduli in the lab. Falling-weight deflectometer (FWD) testing was performed at the sites because the backcalculated moduli are needed for the Level 1 procedure. The resilient modulus was also measured in the lab because it is needed for the Level 2 procedure. A visual pavement rating was performed based on pavement condition because it is needed for the Level 3 procedure. The selected cores were tested for their bulk densities (Gmb) using the AASHTO T166 procedure and then for their dynamic modulus in accordance with the AASHTO TP62-03 standard test method. Then the cores were broken down and tested for their maximum theoretical specific gravity (Gmm) using the AASHTO T-209 procedure. Finally an ignition test was performed to find the percentage of binder and to reclaim the aggregate for gradation analysis. Volumetric properties were then calculated and used as input for the Witczak dynamic modulus prediction equations to find what the MEPDG calls the undamaged master curve of the HMA layer. The FWD data, resilient modulus data, and pavement rating were used to find the damaged master curve of the HMA layer as suggested for input Levels 1, 2, and 3, respectively. It was found that the resilient modulus data needed for a Level 2 type of analysis do not represent the entire HMA layer thickness, and therefore it was recommended that this analysis should not be performed by VDOT when implementing the design guide. The use of Level 1 data is recommended because FWD testing appears to be the only procedure investigated that can measure the overall condition of the entire HMA layer.
The MEPDG (ARA, Inc., "NCHRP 1-37A Final Report: Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures," NCHRP Program 1-37A Project, National Research Council, Washington, D.C., 2004) introduces the dynamic modulus as the material property to characterize asphalt concrete. One of the challenges of acquiring the dynamic modulus from existing pavements is the standard dimensions of the test specimen. The specimen size specified in AASHTO TP62-07 (2007, "Standard Method of Test for Determining Dynamic Modulus of Hot-Mix Asphalt Concrete Mixtures," AASHTO, Washington, D.C.) cannot be obtained from many pavement layers. This study evaluates two other geometries, indirect tension specimens and prismatic specimens, to determine whether the measured dynamic modulus is the same as the modulus obtained from TP62 protocol. This study provides a comparison of the effects of a non-uniform state of stress and anisotropy. These effects are isolated by comparing specimens prepared by Superpave gyratory compaction and vibratory steel-wheel compaction. The comparisons are verified using four 12.5-mm surface course mixtures with different aggregate shapes and binder types, and one 25.0-mm base mixture. The results show that the difference between the dynamic modulus values obtained from different geometries is statistically insignificant. The results provide justification for using alternative methods for acquiring the dynamic modulus experimentally?specifically, for previously constructed pavements.
Data evaluation of the test results indicated the increase of nominal maximum size aggregate amount by 5% to 15% to the standard coarse mix designs had negligible effect on HMA fracture mechanics properties. The SBS polymer-modified asphalt binder improved the fracture mechanics behavior of asphalt mixtures comprehensively. The limestone materials hold advantages over granite materials in improving the performance of thermal cracking at low service temperatures and the rutting resistance at high service temperatures. The master curve construction and linear regression analysis indicated that the total resilient modulus increased with an increase in dynamic modulus at a specific loading frequency. The resilient modulus values were comparable with the dynamic modulus values at the loading frequency of 4 Hz. A correlation relationship was developed for predicting the dynamic modulus from existing resilient modulus values of the asphalt concrete mixture in implementing the mechanistic-empirical pavement design.