Download Free Dynamic Economics Book in PDF and EPUB Free Download. You can read online Dynamic Economics and write the review.

The second edition of a rigorous and example-driven introduction to topics in economic dynamics that emphasizes techniques for modeling dynamic systems. This text provides an introduction to the modern theory of economic dynamics, with emphasis on mathematical and computational techniques for modeling dynamic systems. Written to be both rigorous and engaging, the book shows how sound understanding of the underlying theory leads to effective algorithms for solving real-world problems. The material makes extensive use of programming examples to illustrate ideas, bringing to life the abstract concepts in the text. Key topics include algorithms and scientific computing, simulation, Markov models, and dynamic programming. Part I introduces fundamentals and part II covers more advanced material. This second edition has been thoroughly updated, drawing on recent research in the field. New for the second edition: “Programming-language agnostic” presentation using pseudocode. New chapter 1 covering conceptual issues concerning Markov chains such as ergodicity and stability. New focus in chapter 2 on algorithms and techniques for program design and high-performance computing. New focus on household problems rather than optimal growth in material on dynamic programming. Solutions to many exercises, code, and other resources available on a supplementary website.
An integrated approach to the empirical application of dynamic optimization programming models, for students and researchers. This book is an effective, concise text for students and researchers that combines the tools of dynamic programming with numerical techniques and simulation-based econometric methods. Doing so, it bridges the traditional gap between theoretical and empirical research and offers an integrated framework for studying applied problems in macroeconomics and microeconomics. In part I the authors first review the formal theory of dynamic optimization; they then present the numerical tools and econometric techniques necessary to evaluate the theoretical models. In language accessible to a reader with a limited background in econometrics, they explain most of the methods used in applied dynamic research today, from the estimation of probability in a coin flip to a complicated nonlinear stochastic structural model. These econometric techniques provide the final link between the dynamic programming problem and data. Part II is devoted to the application of dynamic programming to specific areas of applied economics, including the study of business cycles, consumption, and investment behavior. In each instance the authors present the specific optimization problem as a dynamic programming problem, characterize the optimal policy functions, estimate the parameters, and use models for policy evaluation. The original contribution of Dynamic Economics: Quantitative Methods and Applications lies in the integrated approach to the empirical application of dynamic optimization programming models. This integration shows that empirical applications actually complement the underlying theory of optimization, while dynamic programming problems provide needed structure for estimation and policy evaluation.
This book contains a concise description of important mathematical methods of dynamics and suitable economic models. It covers discrete as well as continuous-time systems, linear and nonlinear models. Mixing traditional and modern materials, the study covers dynamics with and without optimization, naive and rational expectations, respectively. In addition to standard models of growth and cycles, the book also contains original studies on control of a multisector economy and expectations-driven multicohort economy. Numerous examples, problems (with solutions) and figures complete the book.
A unified, comprehensive, and up-to-date introduction to the analytical and numerical tools for solving dynamic economic problems. This book offers a unified, comprehensive, and up-to-date treatment of analytical and numerical tools for solving dynamic economic problems. The focus is on introducing recursive methods—an important part of every economist's set of tools—and readers will learn to apply recursive methods to a variety of dynamic economic problems. The book is notable for its combination of theoretical foundations and numerical methods. Each topic is first described in theoretical terms, with explicit definitions and rigorous proofs; numerical methods and computer codes to implement these methods follow. Drawing on the latest research, the book covers such cutting-edge topics as asset price bubbles, recursive utility, robust control, policy analysis in dynamic New Keynesian models with the zero lower bound on interest rates, and Bayesian estimation of dynamic stochastic general equilibrium (DSGE) models. The book first introduces the theory of dynamical systems and numerical methods for solving dynamical systems, and then discusses the theory and applications of dynamic optimization. The book goes on to treat equilibrium analysis, covering a variety of core macroeconomic models, and such additional topics as recursive utility (increasingly used in finance and macroeconomics), dynamic games, and recursive contracts. The book introduces Dynare, a widely used software platform for handling a range of economic models; readers will learn to use Dynare for numerically solving DSGE models and performing Bayesian estimation of DSGE models. Mathematical appendixes present all the necessary mathematical concepts and results. Matlab codes used to solve examples are indexed and downloadable from the book's website. A solutions manual for students is available for sale from the MIT Press; a downloadable instructor's manual is available to qualified instructors.
This is an examples-driven treatment of introductory economic dynamics for students with a basic familiarity of spreadsheets. Shone approaches the subject with the belief that true understanding of a subject can only be achieved by students themselves setting out a problem and manipulating it experimentally. Although all economics students now have access to spreadsheets, they are often used for little more than graphing economic data. This book encourages students to go several stages further and set up and investigate simple dynamic models. A web-site for students and instructors is included that contains an additional 100 questions for students and 100 for instructors.
Dynamic Programming in Economics is an outgrowth of a course intended for students in the first year PhD program and for researchers in Macroeconomics Dynamics. It can be used by students and researchers in Mathematics as well as in Economics. The purpose of Dynamic Programming in Economics is twofold: (a) to provide a rigorous, but not too complicated, treatment of optimal growth models in infinite discrete time horizon, (b) to train the reader to the use of optimal growth models and hence to help him to go further in his research. We are convinced that there is a place for a book which stays somewhere between the "minimum tool kit" and specialized monographs leading to the frontiers of research on optimal growth.
Focusing on deterministic models in discrete time, this concise yet rigorous textbook provides a clear and systematic introduction to the theory and application of dynamic economic models. It guides students through the most popular model structures and solution concepts, from the simplest dynamic economic models through to complex problems of optimal policy design in dynamic general equilibrium frameworks. Chapters feature theorems and practical hints, and seventy-five worked examples highlight the various methods and results that can be applied in dynamic economic models. Notation and formulation is uniform throughout, so students can easily discern the similarities and differences between various model classes. Chapters include more than sixty exercises for students to self-test their analytical skills, and password-protected solutions are available for instructors on the companion website. Assuming no prior knowledge of dynamic economic analysis or dynamic optimization, this textbook is ideal for advanced students in economics.
Capital and Growth was published in 1965, and rapidly established itself as a landmark in economic theory. In this volume, Sir John takes his earlier work and examines it critically for its present-day value. The result is a substantially reworked book based on the first and best part of his 1965 publication. The theme, now more clearly identified, is a comparative study of the economics of change, and brings in many of Hicks's subsequent developments and refinements - in particular a 'neo-Austrian' theory of capital which he developed in Capital and Time(1973). A new chapter on Keynes's methods has been added. The sum is a more complete classification of the family of models appropriate for analysing dynamic economics.
Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.
This work presents the optimization framework for dynamic economics and treats a number of topics in economics, including growth, macroeconomics, microeconomics, finance and dynamic games. The book also teaches by examples, using concepts to solve simple problems, moving on to general propositions.