Download Free Dynamic Econometrics Book in PDF and EPUB Free Download. You can read online Dynamic Econometrics and write the review.

The main problem in econometric modelling of time series is discovering sustainable and interpretable relationships between observed economic variables. The primary aim of this book is to develop an operational econometric approach which allows constructive modelling. Professor Hendry deals with methodological issues (model discovery, data mining, and progressive research strategies); with major tools for modelling (recursive methods, encompassing, super exogeneity, invariance tests); and with practical problems (collinearity, heteroscedasticity, and measurement errors). He also includes an extensive study of US money demand. The book is self-contained, with the technical background covered in appendices. It is thus suitable for first year graduate students, and includes solved examples and exercises to facilitate its use in teaching. About the Series Advanced Texts in Econometrics is a distinguished and rapidly expanding series in which leading econometricians assess recent developments in such areas as stochastic probability, panel and time series data analysis, modeling, and cointegration. In both hardback and affordable paperback, each volume explains the nature and applicability of a topic in greater depth than possible in introductory textbooks or single journal articles. Each definitive work is formatted to be as accessible and convenient for those who are not familiar with the detailed primary literature.
For Masters and PhD students in EconomicsIn this textbook, the duality between the equilibrium concept used in dynamic economic theory and the stationarity of economic variables is explained and used in the presentation of single equations models and system of equations such as VARs, recursive models and simultaneous equations models.The book also contains chapters on: exogeneity, in the context of estimation, policy analysis and forecasting; automatic (computer based) variable selection, and how it can aid in the specification of an empirical macroeconomic model; and finally, on a common framework for model-based economic forecasting.Supplementary materials and notes are available on the publisher's website.
Many relationships in economics, and also in other fields, are both dynamic and nonlinear. A major advance in econometrics over the last fifteen years has been the development of a theory of estimation and inference for dy namic nonlinear models. This advance was accompanied by improvements in computer technology that facilitate the practical implementation of such estimation methods. In two articles in Econometric Reviews, i.e., Pötscher and Prucha {1991a,b), we provided -an expository discussion of the basic structure of the asymptotic theory of M-estimators in dynamic nonlinear models and a review of the literature up to the beginning of this decade. Among others, the class of M-estimators contains least mean distance estimators (includ ing maximum likelihood estimators) and generalized method of moment estimators. The present book expands and revises the discussion in those articles. It is geared towards the professional econometrician or statistician. Besides reviewing the literature we also presented in the above men tioned articles a number of then new results. One example is a consis tency result for the case where the identifiable uniqueness condition fails.
This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods.
Written by one of the leading experts in the field, this book focuses on the interplay between model specification, data collection, and econometric testing of dynamic asset pricing models. The first several chapters provide an in-depth treatment of the econometric methods used in analyzing financial time-series models. The remainder explores the goodness-of-fit of preference-based and no-arbitrage models of equity returns and the term structure of interest rates; equity and fixed-income derivatives prices; and the prices of defaultable securities. Singleton addresses the restrictions on the joint distributions of asset returns and other economic variables implied by dynamic asset pricing models, as well as the interplay between model formulation and the choice of econometric estimation strategy. For each pricing problem, he provides a comprehensive overview of the empirical evidence on goodness-of-fit, with tables and graphs that facilitate critical assessment of the current state of the relevant literatures. As an added feature, Singleton includes throughout the book interesting tidbits of new research. These range from empirical results (not reported elsewhere, or updated from Singleton's previous papers) to new observations about model specification and new econometric methods for testing models. Clear and comprehensive, the book will appeal to researchers at financial institutions as well as advanced students of economics and finance, mathematics, and science.
The second edition of a rigorous and example-driven introduction to topics in economic dynamics that emphasizes techniques for modeling dynamic systems. This text provides an introduction to the modern theory of economic dynamics, with emphasis on mathematical and computational techniques for modeling dynamic systems. Written to be both rigorous and engaging, the book shows how sound understanding of the underlying theory leads to effective algorithms for solving real-world problems. The material makes extensive use of programming examples to illustrate ideas, bringing to life the abstract concepts in the text. Key topics include algorithms and scientific computing, simulation, Markov models, and dynamic programming. Part I introduces fundamentals and part II covers more advanced material. This second edition has been thoroughly updated, drawing on recent research in the field. New for the second edition: “Programming-language agnostic” presentation using pseudocode. New chapter 1 covering conceptual issues concerning Markov chains such as ergodicity and stability. New focus in chapter 2 on algorithms and techniques for program design and high-performance computing. New focus on household problems rather than optimal growth in material on dynamic programming. Solutions to many exercises, code, and other resources available on a supplementary website.
This work describes how the discipline has adapted to changing demands by adopting new insights from economic theory and by taking advantage of the methodological and conceptual advances within time series econometrics.
In this book Christian Gourieroux and Alain Monfort provide an up-to-date and comprehensive analysis of modern time series econometrics. They have succeeded in synthesising in an organised and integrated way a broad and diverse literature. While the book does not assume a deep knowledge of economics, one of its most attractive features is the close attention it pays to economic models and phenomena throughout. The coverage represents a major reference tool for graduate students, researchers and applied economists. The book is divided into four sections. Section one gives a detailed treatment of classical seasonal adjustment or smoothing methods. Section two provides a thorough coverage of various mathematical tools. Section three is the heart of the book, and is devoted to a range of important topics including causality, exogeneity shocks, multipliers, cointegration and fractionally integrated models. The final section describes the main contribution of filtering and smoothing theory to time series econometric problems.
This interdisciplinary book argues that the economy has an underlying non-linear structure and that business cycles are endogenous, which allows a greater explanatory power with respect to the traditional assumption that dynamics are stochastic and shocks are exogenous. The first part of this work is formal-methodological and provides the mathematical background needed for the remainder, while the second part presents the view that signal processing involves construction and deconstruction of information and that the efficacy of this process can be measured. The third part focuses on economics and provides the related background and literature on economic dynamics and the fourth part is devoted to new perspectives in understanding nonlinearities in economic dynamics: growth and cycles. By pursuing this approach, the book seeks to (1) determine whether, and if so where, common features exist, (2) discover some hidden features of economic dynamics, and (3) highlight specific indicators of structural changes in time series. Accordingly, it is a must read for everyone interested in a better understanding of economic dynamics, business cycles, econometrics and complex systems, as well as non-linear dynamics and chaos theory.
"Econometrics: Alchemy or Science?" analyses the effectiveness and validity of applying econometric methods to economic time series. The methodological dispute is long-standing, and no claim can be made for a single valid method, but recent results on the theory and practice of model selection bid fair to resolve many of the contentious issues.The book presents criticisms and evaluations of competing approaches, based on theoretical economic and econometric analyses, empirical applications, and Monte Carlo simulations, which interact to determine best practice. It explains the evolution of an approach to econometric modelling founded in careful statistical analyses of the available data, using economic theory to guide the general model specification. From a strong foundation in the theory of reduction, via a range of applied andsimulation studies, it demonstrates that general-to-specific procedures have excellent properties.The book is divided into four Parts: Routes and Route Maps; Empirical Modelling Strategies; Formalization; and Retrospect and Prospect. A short preamble to each chapter sketches the salient themes, links to earlier and later developments, and the lessons learnt or missed at the time. A sequence of detailed empirical studies of consumers' expenditure and money demand illustrate most facets of the approach. Material new to this revised edition describes recent major advances in computer-automatedmodel selection, embodied in the powerful new software program PcGets, which establish the operational success of the modelling strategy.