Download Free Dynamic Analysis Of Flexible Mechanisms With Clearance Book in PDF and EPUB Free Download. You can read online Dynamic Analysis Of Flexible Mechanisms With Clearance and write the review.

"This research is focused on studying the dynamic behavior of a four-bar mechanism with clearance. The presence of clearance in a revolute joint induces impacts between the journal and the sleeve. Therefore, it causes vibration, noise and decreases the efficiency of the mechanism. Two different methods are proposed to eliminate the undesirable effects of clearance in the joint through simulations and experiments. The first method, that is used to eliminate these impacts, relies on attaching a spring to a rigid four-bar mechanism. The impacts are predicted by monitoring the moment of the reaction force in the joint with clearance using MATLAB software simulations. It is shown that the impacts could be easily eliminated using adequate and optimized spring parameters. The optimization of the spring parameters is performed to keep the positive effects of adding the spring (eliminating the impacts) and to minimize its negative effects (high maximum input torque and its high fluctuations). The second method aims at studying the dynamic behavior of the mechanism with a flexible coupler link. The dynamic analysis of the flexible mechanism is investigated using two different materials of the coupler link (aluminum and steel) with two different thickness values for each material (3 and 4 mm for aluminum and 1.5 and 2 mm for the steel). The rigid mechanism is considered in this case with a coupler link made of steel with 5 mm thickness to highlight the difference between flexible and rigid mechanisms. The deformation of the flexible coupler links (using ideal joints) is investigated by measuring the strain values at three different speeds (277, 415 and 554 rpm). The obtained results show that the strain values are significantly affected by the crank speed and the thickness of the links. Experimental tests are performed to measure the accelerations for the follower of the four-bar mechanism using rigid and flexible coupler links. These measurements are done for the case of ideal joint (no clearance) and realistic joint with a clearance of 0.5 mm and 1 mm sizes at the three mentioned speeds for each case. The experimental results are validated through simulation tests using ADAMS software. These results confirm that the flexibility of the coupler has thus a role of a suspension for the mechanism."--Abstract.
This book presents suitable methodologies for the dynamic analysis of multibody mechanical systems with joints. It contains studies and case studies of real and imperfect joints. The book is intended for researchers, engineers, and graduate students in applied and computational mechanics.
These proceedings collect the latest research results in mechanism and machine science, intended to reinforce and improve the role of mechanical systems in a variety of applications in daily life and industry. Gathering more than 120 academic papers, it addresses topics including: Computational kinematics, Machine elements, Actuators, Gearing and transmissions, Linkages and cams, Mechanism design, Dynamics of machinery, Tribology, Vehicle mechanisms, dynamics and design, Reliability, Experimental methods in mechanisms, Robotics and mechatronics, Biomechanics, Micro/nano mechanisms and machines, Medical/welfare devices, Nature and machines, Design methodology, Reconfigurable mechanisms and reconfigurable manipulators, and Origami mechanisms. This is the fourth installment in the IFToMM Asian conference series on Mechanism and Machine Science (ASIAN MMS 2016). The ASIAN MMS conference initiative was launched to provide a forum mainly for the Asian community working in Mechanism and Machine Science, in order to facilitate collaboration and improve the visibility of activities in the field. The series started in 2010 and the previous ASIAN MMS events were successfully held in Taipei, China (2010), Tokyo, Japan (2012), and Tianjin, China (2014). ASIAN MMS 2016 was held in Guangzhou, China, from 15 to 17 December 2016, and was organized by the South China University under the patronage of the IFToMM and the Chinese Mechanical Engineering Society (CMES). The aim of the Conference was to bring together researchers, industry professionals and students from the broad range of disciplines connected to Mechanism Science in a collegial and stimulating environment. The ASIAN MMS 2016 Conference provided a platform allowing scientists to exchange notes on their scientific achievements and establish new national and international collaborations concerning the mechanism science field and its applications, mainly but not exclusively in Asian contexts.
This book offers a collection of original peer-reviewed contributions presented at the 3rd International and 18th National Conference on Machines and Mechanisms (iNaCoMM), organized by Division of Remote Handling & Robotics, Bhabha Atomic Research Centre, Mumbai, India, from December 13th to 15th, 2017 (iNaCoMM 2017). It reports on various theoretical and practical features of machines, mechanisms and robotics; the contributions include carefully selected, novel ideas on and approaches to design, analysis, prototype development, assessment and surveys. Applications in machine and mechanism engineering, serial and parallel manipulators, power reactor engineering, autonomous vehicles, engineering in medicine, image-based data analytics, compliant mechanisms, and safety mechanisms are covered. Further papers provide in-depth analyses of data preparation, isolation and brain segmentation for focused visualization and robot-based neurosurgery, new approaches to parallel mechanism-based Master-Slave manipulators, solutions to forward kinematic problems, and surveys and optimizations based on historical and contemporary compliant mechanism-based design. The spectrum of contributions on theory and practice reveals central trends and newer branches of research in connection with these topics.
This book presents the conference proceedings of the 23rd IFToMM China International Conference on Mechanism and Machine Science & Engineering (IFToMM CCMMS 2022). CCMMS was initiated in 1982, and it is the most important forum held in China for the exchange of research ideas, presentation of technical and scientific achievements, and discussion of future directions in the field of mechanism and machine science. The topics include parallel/hybrid mechanism synthesis and analysis, theoretical & computational kinematics, compliant mechanisms and micro/nano-mechanisms, reconfigurable and metamorphic mechanisms, space structures, mechanisms and materials, structure adaptation in space environment and ground testing, large-scale membrane deployable structures, construction and application of super-scale space systems, cams, gears and combining mechanisms, fluid power mechatronics drivetrain, mechanical design theory and methods, dynamics and vibration control, mechatronics, biologically inspired mechanisms and robotics, medical & rehabilitation robotics, mobile robotics, soft robotics, heavy non-road mobile machine, robot applications, engineering education on mechanisms, machines, and robotics. This book provides a state-of-the-art overview of current advances in mechanism and machine science in China. The inspiring ideas presented in the papers enlighten academic research and industrial application. The potential readers include academic researchers and industrial professionals in mechanism and machine science.
Advances in Reconfigurable Mechanisms and Robots I provides a selection of key papers presented in The Second ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR 2012) held on 9th -11th July 2012 in Tianjin, China. This ongoing series of conferences will be covered in this ongoing collection of books. A total of seventy-eight papers are divided into seven parts to cover the topology, kinematics and design of reconfigurable mechanisms with the reconfiguration theory, analysis and synthesis, and present the current research and development in the field of reconfigurable mechanisms including reconfigurable parallel mechanisms. In this aspect, the recent study and development of reconfigurable robots are further presented with the analysis and design and with their control and development. The bio-inspired mechanisms and subsequent reconfiguration are explored in the challenging fields of rehabilitation and minimally invasive surgery. Advances in Reconfigurable Mechanisms and Robots I further extends the study to deployable mechanisms and foldable devices and introduces applications of reconfigurable mechanisms and robots. The rich-content of Advances in Reconfigurable Mechanisms and Robots I brings together new developments in reconfigurable mechanisms and robots and presents a new horizon for future development in the field of reconfigurable mechanisms and robots.
In this study, dynamic behaviors of planar mechanisms with elastic linkages are investigated. For this purpose, slider-crank mechanisms which are widely used in many fields of industry are chosen. Flexible coupler of the mechanism is considered as a pin jointed beam under the effect of elastic oscillations in transverse direction. Euler-Bernoulli beam theory is considered to obtain dynamic responses of the elastic link. Lumped parameters approach is used to model the flexible links. Since, the assumption of small deflections is made, linear and continuous form of the elastic curve equation is written for each lumped masses on the beam to derive the equations of motion of the system. Derived set of nonlinear partial differential equations are reduced to ordinary differential equations by applying finite difference method. Finally, a symbolic mathematical program which gives the dynamic responses of the system is developed to solve the equations of motion. The results obtained from the developed program are tested and verified by the results available in the literature. Elastic deflection results are obtained for different parameters such as mass ratio and length ratio of the links of the mechanisms. The effects of the aforementioned parameters on dynamic response are found and presented in graphical forms.
Flexible Mechanisms such as slider crank and four-bar mechanisms are modeled and their dynamic instability and optimum design analyzed. The primary aim of the project was a thorough understanding and analysis of conditions of dynamic instability in flexible components of mechanisms and robots. Dynamic instability characterizes the behavior when amplitude of vibrations have a tendency to become unbounded with the passage of time. Other aims of the study included the optimal design of mechanisms on the basis of flexibility and control of stresses and deflections.