Download Free Dynamic Analysis Of A Formula Sae Car Book in PDF and EPUB Free Download. You can read online Dynamic Analysis Of A Formula Sae Car and write the review.

This book presents the definition of a methodology to deeply analyze the dynamic and handling of a Formula SAE car, focusing the attention on the creation of a vehicle model able to simulate almost all the common maneuvers that the formula has to perform during a typical race. During the development of this work, two different models have been created: a 3 DOF one and a 15 DOF one. Both of them, built starting from the effective Formula SAE car geometric and inertial data, have been tested on common maneuvers and the results compared with the real car telemetry, to prove the efficiency and correct response of the simulator. Both the models gave interesting results, always demonstrating to give correct outputs, compared to real car or to commercial software.
The suspension system of a FSAE (Formula Society of Automotive Engineers) vehicle is a vital system with many functions that include providing vertical compliance so the wheels can follow the uneven road, maintaining the wheels in the proper steer and camber attitudes to the road surface and reacting to the control forces produced by the tires (acceleration, braking and cornering). The members that comprise the suspension are subjected to a variety of dynamic loading conditions – it is imperative that they are designed properly to ensure the safety and performance of the vehicle. The goal of this research is to develop a model for predicting the reaction forces in the suspension members based on the expected load scenarios the vehicle will undergo. This model is compared to the current FSAE vehicle system and the design process is explained. The limitations of this model are explored and future methodologies and improvement techniques are discussed.
Several standardized courses for Formula SAE (FSAE) testing are introduced and described with sufficient detail to be reproduced by any Formula SAE team. Basic analysis methods for the courses are given as well as explanations of how those analyses could be used. On-car data from the Global Formula Racing (GFR) SAE cars is used to verify the analysis methods, give estimates to unknown variables, and show the relevance of the standard testing courses. Using the courses and methods described in this paper should allow standardized comparison of FSAE car performance, as well as provide a method to verify simulations and evaluate changes in vehicle performance from tuning. Instrumentation of all suspension member forces with strain gauge load cells is shown to be an extremely powerful tool for measuring vehicle performance and quantifying vehicle dynamic characteristics. The design and implementation of strain gauge load cells is described in detail to provide a template for reproducing similar results in other vehicles. Data from the GFR 2011 FSAE car is used throughout the paper to: show the design process for making effective suspension member load cells, show the calibration processes necessary to ensure quality data is collected, illustrate the calculation of suspension corner forces, and show the effectiveness of measuring vehicle dynamic characteristics with this technique. Using the methods described in this paper should provide data that allows a more complete and thorough understanding of on-car vehicle dynamics. This data may be used to validate vehicle models.
This set includes Race Car Vehicle Dynamics, and Race Car Vehicle Dynamics - Problems, Answers and Experiments. Written for the engineer as well as the race car enthusiast, Race Car Vehicle Dynamics includes much information that is not available in any other vehicle dynamics text. Truly comprehensive in its coverage of the fundamental concepts of vehicle dynamics and their application in a racing environment, this book has become the definitive reference on this topic. Although the primary focus is on the race car, the engineering fundamentals detailed are also applicable to passenger car design and engineering. Authors Bill and Doug Milliken have developed many of the original vehicle dynamics theories and principles covered in this book, including the Moment Method, "g-g" Diagram, pair analysis, lap time simulation, and tyre data normalization. The book also includes contributions from other experts in the field. Chapters cover: *The Problem Imposed by Racing *Tire Behavior *Aerodynamic Fundamentals *Vehicle Axis Systems and more. Written for the engineer as well as the race car enthusiast and students, the companion workbook to the original classic book, Race Car Vehicle Dynamics, includes: *Detailed worked solutions to all of the problems *Problems for every chapter in Race Car Vehicle Dynamics, including many new problems *The Race Car Vehicle Dynamics Program Suite (for Windows) with accompanying exercises *Experiments to try with your own vehicle *Educational appendix with additional references and course outlines *Over 90 figures and graphs This workbook is widely used as a college textbook and has been an SAE International best seller since it's introduction in 1995.