Download Free Dynamic 3d Scene Analysis And Modeling With A Time Of Flight Camera Book in PDF and EPUB Free Download. You can read online Dynamic 3d Scene Analysis And Modeling With A Time Of Flight Camera and write the review.

Viele Anwendungen des Maschinellen Sehens benötigen die automatische Analyse und Rekonstruktion von statischen und dynamischen Szenen. Deshalb ist die automatische Analyse von dreidimensionalen Szenen und Objekten ein Bereich der intensiv erforscht wird. Die meisten Ansätze konzentrieren sich auf die Rekonstruktion statischer Szenen, da die Rekonstruktion nicht-statischer Geometrien viel herausfordernder ist und voraussetzt, dass dreidimensionale Szeneninformation mit hoher zeitlicher Auflösung verfügbar ist. Statische Szenenanalyse wird beispielsweise in der autonomen Navigation, für die Überwachung und für die Erhaltung des Kulturerbes eingesetzt. Andererseits eröffnet die Analyse und Rekonstruktion nicht-statischer Geometrie viel mehr Möglichkeiten, nicht nur für die bereits erwähnten Anwendungen. In der Produktion von Medieninhalten für Film und Fernsehen kann die Analyse und die Aufnahme und Wiedergabe von vollständig dreidimensionalen Inhalten verwendet werden um neue Ansichten realer Szenen zu erzeugen oder echte Schauspieler durch animierte virtuelle Charaktere zu ersetzen. Die wichtigste Voraussetzung für die Analyse von dynamischen Inhalten ist die Verfügbarkeit von zuverlässigen dreidimensionalen Szeneninformationen. Um die Entfernung von Punkten in der Szene zu bestimmen wurden meistens Stereo-Verfahren eingesetzt, aber diese Verfahren benötigen viel Rechenzeit und erreichen in Echtzeit nicht die benötigte Qualität. In den letzten Jahren haben die so genannten Laufzeitkameras das Stadium der Prototypen verlassen und sind jetzt in der Lage dichte Tiefeninformationen in vernünftiger Qualität zu einem vernünftigen Preis zu liefern. Diese Arbeit untersucht die Eignung dieser Kameras für die Analyse nicht-statischer dreidimensionaler Szenen. Bevor eine Laufzeitkamera für die Analyse eingesetzt werden kann muss sie intern und extern kalibriert werden. Darüber hinaus leiden Laufzeitkameras an systematischen Fehlern bei der Entfernungsmessung, bedingt durch ihr
This book constitutes the refereed proceedings of the Dynamic 3D Imaging Workshop, Dyn3D 2009, held in Jena, Germany as an associated event of DAGM 2009, the main international conference of the "Deutsche Arbeitsgemeinschaft für Mustererkennung". The 13 revised full papers presented were carefully reviewed and selected for inclusion in the book. The papers cover a range of topics of current interest: fundamentals of ToF- sensors, algorithms and data fusion and applications of dynamic 3D scene analysis. This book is aimed at researchers interested in novel approaches in the field of real-time range imaging.
This unique work presents a detailed review of the processing and analysis of 3D point clouds. A fully automated framework is introduced, incorporating each aspect of a typical end-to-end processing workflow, from raw 3D point cloud data to semantic objects in the scene. For each of these components, the book describes the theoretical background, and compares the performance of the proposed approaches to that of current state-of-the-art techniques. Topics and features: reviews techniques for the acquisition of 3D point cloud data and for point quality assessment; explains the fundamental concepts for extracting features from 2D imagery and 3D point cloud data; proposes an original approach to keypoint-based point cloud registration; discusses the enrichment of 3D point clouds by additional information acquired with a thermal camera, and describes a new method for thermal 3D mapping; presents a novel framework for 3D scene analysis.
This book deals with selected problems of machine perception, using various 2D and 3D imaging sensors. It proposes several new original methods, and also provides a detailed state-of-the-art overview of existing techniques for automated, multi-level interpretation of the observed static or dynamic environment. To ensure a sound theoretical basis of the new models, the surveys and algorithmic developments are performed in well-established Bayesian frameworks. Low level scene understanding functions are formulated as various image segmentation problems, where the advantages of probabilistic inference techniques such as Markov Random Fields (MRF) or Mixed Markov Models are considered. For the object level scene analysis, the book mainly relies on the literature of Marked Point Process (MPP) approaches, which consider strong geometric and prior interaction constraints in object population modeling. In particular, key developments are introduced in the spatial hierarchical decomposition of the observed scenarios, and in the temporal extension of complex MRF and MPP models. Apart from utilizing conventional optical sensors, case studies are provided on passive radar (ISAR) and Lidar-based Bayesian environment perception tasks. It is shown, via several experiments, that the proposed contributions embedded into a strict mathematical toolkit can significantly improve the results in real world 2D/3D test images and videos, for applications in video surveillance, smart city monitoring, autonomous driving, remote sensing, and optical industrial inspection.
This book explains how depth measurements from the Time-of-Flight (ToF) range imaging cameras are influenced by the electronic timing-jitter. The author presents jitter extraction and measurement techniques for any type of ToF range imaging cameras. The author mainly focuses on ToF cameras that are based on the amplitude modulated continuous wave (AMCW) lidar techniques that measure the phase difference between the emitted and reflected light signals. The book discusses timing-jitter in the emitted light signal, which is sensible since the light signal of the camera is relatively straightforward to access. The specific types of jitter that present on the light source signal are investigated throughout the book. The book is structured across three main sections: a brief literature review, jitter measurement, and jitter influence in AMCW ToF range imaging.
The two-volume set LNCS 6978 + LNCS 6979 constitutes the proceedings of the 16th International Conference on Image Analysis and Processing, ICIAP 2011, held in Ravenna, Italy, in September 2011. The total of 121 papers presented was carefully reviewed and selected from 175 submissions. The papers are divided into 10 oral sessions, comprising 44 papers, and three post sessions, comprising 77 papers. They deal with the following topics: image analysis and representation; image segmentation; pattern analysis and classification; forensics, security and document analysis; video analysis and processing; biometry; shape analysis; low-level color image processing and its applications; medical imaging; image analysis and pattern recognition; image and video analysis and processing and its applications.
3D Imaging, Analysis and Applications brings together core topics, both in terms of well-established fundamental techniques and the most promising recent techniques in the exciting field of 3D imaging and analysis. Many similar techniques are being used in a variety of subject areas and applications and the authors attempt to unify a range of related ideas. With contributions from high profile researchers and practitioners, the material presented is informative and authoritative and represents mainstream work and opinions within the community. Composed of three sections, the first examines 3D imaging and shape representation, the second, 3D shape analysis and processing, and the last section covers 3D imaging applications. Although 3D Imaging, Analysis and Applications is primarily a graduate text, aimed at masters-level and doctoral-level research students, much material is accessible to final-year undergraduate students. It will also serve as a reference text for professional academics, people working in commercial research and development labs and industrial practitioners.
3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application scenarios expected as the discipline develops further. The book covers face acquisition through 3D scanners and 3D face pre-processing, before examining the three main approaches for 3D facial surface analysis and recognition: facial curves; facial surface features; and 3D morphable models. Whilst the focus of these chapters is fundamentals and methodologies, the algorithms provided are tested on facial biometric data, thereby continually showing how the methods can be applied. Key features: • Explores the underlying mathematics and will apply these mathematical techniques to 3D face analysis and recognition • Provides coverage of a wide range of applications including biometrics, forensic applications, facial expression analysis, and model fitting to 2D images • Contains numerous exercises and algorithms throughout the book
This book constitutes the thoroughly refereed post-proceedings of the 15th International Workshop on Theoretic Foundations of Computer Vision, held as a Dagstuhl Seminar in Dagstuhl Castle, Germany, in June/July 2011. The 19 revised full papers presented were carefully reviewed and selected after a blind peer-review process. The topic of this Workshop was Outdoor and Large-Scale Real-World Scene Analysis, which covers all aspects, applications and open problems regarding the performance or design of computer vision algorithms capable of working in outdoor setups and/or large-scale environments. Developing these methods is important for driver assistance, city modeling and reconstruction, virtual tourism, telepresence, and motion capture.
Time-of-flight (TOF) cameras provide a depth value at each pixel, from which the 3D structure of the scene can be estimated. This new type of active sensor makes it possible to go beyond traditional 2D image processing, directly to depth-based and 3D scene processing. Many computer vision and graphics applications can benefit from TOF data, including 3D reconstruction, activity and gesture recognition, motion capture and face detection. It is already possible to use multiple TOF cameras, in order to increase the scene coverage, and to combine the depth data with images from several colour cameras. Mixed TOF and colour systems can be used for computational photography, including full 3D scene modelling, as well as for illumination and depth-of-field manipulations. This work is a technical introduction to TOF sensors, from architectural and design issues, to selected image processing and computer vision methods.