Download Free Dwarf Galaxies In A Cosmological Context Book in PDF and EPUB Free Download. You can read online Dwarf Galaxies In A Cosmological Context and write the review.

This timely book presents an overview of the galaxies within the Local Volume, including the Local Group and our closest neighbours, the Andromeda Galaxy and the Magellanic Clouds. Presented here are the latest results from radio, infrared and optical surveys as well as detailed multi-wavelength studies of individual galaxies. The book aims to provide a vibrant forum for presentations and discussions across a broad range of astrophysical topics.
The paradigm of a dark energy- and dark matter-dominated Universe, with the hierarchical merger scenario for the formation of galaxies, has scored impressive successes in matching the observed Universe. However, the theory fails to explain the difficulty in generating ordinary disk galaxies such as the Milky Way, suggesting that some important physics must be missing in current models. IAU Symposium 254 was organized to address this question, gathering researchers from an unusually broad range of fields, from cosmology to interstellar matter, and the formation and evolution of stars. High-class reviews, lectures and posters combine to define the frontiers in the field and point the way to new avenues of research. This volume presents a unique set of succinct overviews illuminating the full range of topics in this very active field. It also honors Danish astrophysicist Bengt Strömgren (1908-1987), who laid much of the foundation for this entire field.
The book discusses the theoretical path to decoding the information gathered from observations of old stellar systems. It focuses on old stellar systems because these are the fossil record of galaxy formation and provide invaluable information ont he evolution of cosmic structures and the universe as a whole. The aim is to present results obtained in the past few years for theoretical developments in low mass star research and in advances in our knowledge of the evolution of old stellar systems. A particularly representative case is the recent discovery of multiple stellar populations in galactic globular clusters that represents one of the hottest topics in stellar and galactic astrophysics and is discussed in detail. Santi Cassisi has authored about 270 scientific papers, 150 of them in peer-reviewed journals, and the title Evolution of Stars and Stellar Populations.
Supermassive black holes are now believed to play an important role in the evolution of the Universe. Every respectable galaxy hosts in its center a black hole that appears to regulate the growth of the galaxy itself. In this book, leading experts in the field review the most recent theoretical and observational results on the following topics: - formation and growth of the first black holes in the Universe and their role in the formation and evolution of galaxies - the physics of black-hole accretion and the production of relativistic jets - binary black-hole mergers and gravitational radiation. Theoretical work is supplemented by the most recent exciting results from space and ground based observatories. This volume is useful research and reference tool for the entire astrophysical community.
Theideatocelebrate50yearsoftheSalpeterIMFoccurredduringtherecent IAU General Assembly in Sydney, Australia. Indeed, it was from Australia that in July 1954 Ed Salpeter submitted his famous paper "The Luminosity Function and Stellar Evolution" with the rst derivation of the empirical stellar IMF. This contribution was to become one of the most famous astrophysics papers of the last 50 years. Here, Ed Salpeter introduced the terms "original mass function" and "original luminosity function", and estimated the pro- bility for the creation of stars of given mass at a particular time, now known as the "Salpeter Initial Mass Function", or IMF. The paper was written at the Australian National University in Canberra on leave of absence from Cornell University (USA) and was published in 1955 as 7 page note in the Astroph- ical Journal Vol. 121, page 161. To celabrate the 50th anniversary of the IMF, along with Ed Salpeter’s 80th birthday, we have organized a special meeting that brought together scientists involved in the empirical determination of this fundamental quantity in a va- ety of astrophysical contexts and other scientists fascinated by the deep imp- cations of the IMF on star formation theories, on the physical conditions of the gas before and after star formation, and on galactic evolution and cosmology. The meeting took place in one of the most beautiful spots of the Tuscan countryside, far from the noise and haste of everyday life.
The rapid advance of computer capabilities over the last two decades has opened up a new field of numerical simulations in which detailed physical models can be made to represent the most complex processes. IAU Symposium 270 reviews a wide range of topics relevant to computer modeling in the fields of interstellar gas dynamics, star formation and galactic dynamics. It includes numerical techniques for modeling physical processes such as self-gravitating, radiative magnetohydrodynamics, as well as novel hardware options for acceleration and a view into the future of computation. Observations of interstellar gas and star formation are also reviewed. This book is ideal for graduate students and researchers in the field of numerical astrophysics.
A coherent introduction for researchers in astronomy, particle physics, and cosmology on the formation and evolution of galaxies.
Provides the most complete and up-to-date account of our understanding of the Magellanic Clouds and the astrophysical processes within them.
Dwarf galaxy research constitutes an extremely vibrant field of astrophysical research, with many long-standing questions still unsettled and new ones constantly arising. The intriguing diversity of the dwarf galaxy population, observed with advanced ground-based and space-borne observatories over a wide spectral window providing an unprecedented level of detail, poses new challenges for both observers and theoreticians. The aim of this symposium was to bring together these two groups to exchange ideas and new results on the many evolutionary aspects of and open issues concerning dwarf galaxies. The main topics addressed include: the birth of dwarf galaxies: theoretical concepts and observable relics across wavelengths and time, the morphological, structural and chemical evolution of dwarf galaxies, possible evolutionary connections between early-type and late-type dwarfs, the star formation history of dwarf galaxies and its dependence on intrinsic and environmental properties, the origin and implications of starburst activity in dwarf galaxies, the fate of dwarfish systems born out of tidally ejected matter in galaxy collisions.
It is sometimes said that astronomy is the crossroads of physics. In the same spirit, it can forcefully be argued that galaxies are the crossroads of astronomy. Internal pro ces ses within galaxies involve all of the fundamental components of astrophysics: stellar evolution, star formation, low-density astrophysics, dynamics, hydrodynamics, and high-energy astrophysics. Indeed, one can hardly name an observational datum in any wavelength range on any kind of celestial object that does not provide a useful clue to galaxy formation and evolution. Although internal processes in galaxies until recently occupied most of our attention, we now know that it is also vital to relate galaxies to their environment. How galaxies congregate in larger structures and are in turn influenced by them are crucial questions for galactic evolution. On a grander level we have also come to regard galaxies as the basic building blocks of the universe, the basic units whereby the large scale structure of the universe is apprehended and quantified. On a grander level still, we also believe strongly that galaxies are the direct descendents of early density irregularities in the Big Bang. Galaxy properties are now viewed as providing a crucial constraint on the physics of the Big Bang and a vital link between the macroscopic and microscopic structure of the universe.