Download Free Duality Theories For Boolean Algebras With Operators Book in PDF and EPUB Free Download. You can read online Duality Theories For Boolean Algebras With Operators and write the review.

In this new text, Steven Givant—the author of several acclaimed books, including works co-authored with Paul Halmos and Alfred Tarski—develops three theories of duality for Boolean algebras with operators. Givant addresses the two most recognized dualities (one algebraic and the other topological) and introduces a third duality, best understood as a hybrid of the first two. This text will be of interest to graduate students and researchers in the fields of mathematics, computer science, logic, and philosophy who are interested in exploring special or general classes of Boolean algebras with operators. Readers should be familiar with the basic arithmetic and theory of Boolean algebras, as well as the fundamentals of point-set topology.
This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia’s original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations to weak Heyting algebras and implicative semilattices. The book also dives into the Blok-Esakia theorem and provides an outline of the intuitionistic modal logic KM which is closely related to the Gödel-Löb provability logic GL. One chapter scrutinizes Esakia’s work interpreting modal diamond as the derivative of a topological space within the setting of point-free topology. The final chapter in the volume is dedicated to the derivational semantics of modal logic and other related issues.
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.​
This is an advanced 2001 textbook on modal logic, a field which caught the attention of computer scientists in the late 1970s. Researchers in areas ranging from economics to computational linguistics have since realised its worth. The book is for novices and for more experienced readers, with two distinct tracks clearly signposted at the start of each chapter. The development is mathematical; prior acquaintance with first-order logic and its semantics is assumed, and familiarity with the basic mathematical notions of set theory is required. The authors focus on the use of modal languages as tools to analyze the properties of relational structures, including their algorithmic and algebraic aspects, and applications to issues in logic and computer science such as completeness, computability and complexity are considered. Three appendices supply basic background information and numerous exercises are provided. Ideal for anyone wanting to learn modern modal logic.
This book constitutes the proceedings of the Third International Conference on Algebra and Coalgebra in Computer Science, CALCO 2009, formed in 2005 by joining CMCS and WADT. This year the conference was held in Udine, Italy, September 7-10, 2009. The 23 full papers were carefully reviewed and selected from 42 submissions. They are presented together with four invited talks and workshop papers from the CALCO-tools Workshop. The conference was divided into the following sessions: algebraic effects and recursive equations, theory of coalgebra, coinduction, bisimulation, stone duality, game theory, graph transformation, and software development techniques.
This is a comprehensive book on the life and works of Leon Henkin (1921–2006), an extraordinary scientist and excellent teacher whose writings became influential right from the beginning of his career with his doctoral thesis on “The completeness of formal systems” under the direction of Alonzo Church. Upon the invitation of Alfred Tarski, Henkin joined the Group in Logic and the Methodology of Science in the Department of Mathematics at the University of California Berkeley in 1953. He stayed with the group until his retirement in 1991. This edited volume includes both foundational material and a logic perspective. Algebraic logic, model theory, type theory, completeness theorems, philosophical and foundational studies are among the topics covered, as well as mathematical education. The work discusses Henkin’s intellectual development, his relation to his predecessors and contemporaries and his impact on the recent development of mathematical logic. It offers a valuable reference work for researchers and students in the fields of philosophy, mathematics and computer science.
This book discusses heuristic methods – methods lacking a solid theoretical justification – which are ubiquitous in numerous application areas, and explains techniques that can make heuristic methods more reliable. Focusing on algebraic techniques, i.e., those that use only a few specific features of a situation, it describes various state-of-the-art applications, ranging from fuzzy methods for dealing with imprecision to general optimization methods and quantum-based methods for analyzing economic phenomena. The book also includes recent results from leading researchers, which could (and hopefully will) provide the basis for future applications. As such, it is a valuable resource for mathematicians interested in potential applications of their algebraic results and ideas, as well as for application specialists wanting to discover how algebraic techniques can help in their domains.
This volume addresses all current aspects of relational methods and their applications in computer science. It presents a broad variety of fields and issues in which theories of relations provide conceptual or technical tools. The contributions address such subjects as relational methods in programming, relational constraints, relational methods in linguistics and spatial reasoning, relational modelling of uncertainty. All contributions provide the readers with new and original developments in the respective fields. The reader thus gets an interdisciplinary spectrum of the state of the art of relational methods and implementation-oriented solutions of problems related to these areas.
Introducing Stone-Priestley duality theory and its applications to logic and theoretical computer science, this book equips graduate students and researchers with the theoretical background necessary for reading and understanding current research in the area. After giving a thorough introduction to the algebraic, topological, logical, and categorical aspects of the theory, the book covers two advanced applications in computer science, namely in domain theory and automata theory. These topics are at the forefront of active research seeking to unify semantic methods with more algorithmic topics in finite model theory. Frequent exercises punctuate the text, with hints and references provided.