Download Free Dual Reconfigurable Exoskeleton Hand System With Opposable Thumbs Book in PDF and EPUB Free Download. You can read online Dual Reconfigurable Exoskeleton Hand System With Opposable Thumbs and write the review.

Between a global pandemic, aging population, and labor shortages, there is an ongoing spike in the demand for healthcare that cannot be satisfied with traditional methods and the human workforce. Robotic technology offers a solution to this dilemma; applying robotics to healthcare is an active area of research that has begun to be widely commercialized. Whilethere are many potential avenues for robots to improve health and well-being, my research has focused on two areas in particular: the development of robotic hand exoskeletons for rehabilitation and the enhancement of robotic surgery via automation and sensor development. Exoskeletons have been shown to be effective for use in physical rehabilitation of numerous conditions including spinal cord injury and stroke. However, at present, the huge majority of exoskeleton systems are constructed for only the arm (from shoulder to wrist), back, lower limbs, or hands. Few systems have been developed that combine both full arm and hand systems, and those that do generally have limited actuation of the hand. This is partly because the mechanical complexity of the hand requires rigid hand exoskeletons to be complex and bulky if they are able to control many of the important degrees of freedom. This bulk and complexity makes the hand systems challenging to successfully integrate onto the distal end of an arm exoskeleton. However, there is significant demand for combined arm and hand rehabilitation exoskeletons because many activities of daily living, that physical therapy focuses on retraining, require reaching and grasping together. The overarching goals of this research are to develop a novel hand exoskeleton, experimentally evaluate its capabilities in preparation for application to stroke rehabilitation, and integrate it on the existing EXO-UL8 and concurrently developed BLUE SABINO upper limb exoskeleton systems. Chapter 1 provides an introduction on hand exoskeleton systems, with a focus on those designed for rehabilitation. My work on hand exoskeletons started by inheriting a hand exoskeleton mechanical design from Brando Dimapasoc, a graduating Master's Degree student, that was developed as part of NSF Award #1532239. The system was intended to be attached to the EXO-UL8 and BLUE SABINO arm exoskeletons, had six active and six passive degrees of freedom, had three reconfigurable linkages to control the thumb and two groupings of fingers, used a bowden cable transmission system to enable remote placement of actuators, and was optimized to fit 90% of the general population. However, the design had only been tested as a 3D-printed prototype in a modified and simplified form. Further, the necessary electronic hardware (other than motor and sensor selection) and control software had not been started. Thus, the first stage of my research was to bring this first-generation hand exoskeleton to a functional state. This involved the mechanical assembly, the electrical design and assembly, and the software and control development of the system. Through testing, it was determined that a significant number of improvements must be made to the system in order for it to be suitable for use. Details of this work are contained in Chapter 2. With the lessons learned from development and testing of the first-generation hand exoskeleton, the next stage of my research involved the nearly complete redesign of the system in order to create the second-generation hand exoskeleton named the "Opposable-Thumb Hand Exoskeleton for Rehabilitation" or "OTHER Hand". As the name implies, the system is designed to control opposition/reposition of the thumb in addition to the flexion/extension of each digit. This is a notable feature, not only because of the importance of opposition/reposition in many grasping tasks, but also because only a handful of exoskeletons in the literature control this motion. The OTHER Hand shares a number of features with the first generation system, though the execution of each is different. It attaches to both the EXO-UL8 and BLUE SABINO arm exoskeletons, is actuated using a Bowden Cable transmission such that the motor pack can be located remotely, has three reconfigurable linkages to control the thumb and two groupings of fingers in order to enable nearly all grasps, and is optimized to fit 90% of the population. The system has six active and eight passive degrees of freedom per hand. Chapter 3 documents the design of the OTHER Hand. Due to the numerous novel design choices made for the OTHER Hand, combined with the mechanical complexity of the hand in general, and thumb in particular, it is not feasible to know with certainty the types of grasps that can be actuated in the exoskeleton for the wide range of hand shapes and sizes. As such, it is necessary to validate the design of the OTHER Hand through testing with a group of subjects. This was accomplished through adaptation of the Anthropomorphic Hand Assessment Protocol for use with an exoskeleton to test the ability of thirteen subjects to grasp and manipulate 25 objects of the Yale-Carnegie Mellon-Berkeley Object Set using eight prehensile grasps and two non-prehensile hand postures. Additionally, the OTHER Hand was mounted on the EXO-UL8, and both systems were manually controlled to verify compatibility, workspace, and ability to bi-manually grasp a sample object. Chapter 4 presents the testing protocol and results. While exoskeletons for rehabilitation is an increasingly popular research area, robotic surgical platforms already have widespread commercial use and profound effects on clinical outcomes. Classically, these systems are controlled directly by a surgeon at a console in the same or adjacent room. They can augment the senses and movement precision of the surgeon during open or laparoscopic surgery in order to enhance the surgeon's skills. However, surgeons commonly work exceptionally long hours in an environment where a single mistake can be fatal. Additionally, certain surgical subtasks are time-consuming, repetitive, and common to many different operations. Automating these subtasks has the potential to reduce the burden on surgeons while standardizing outcomes. Automation of one such subtask, soft tissue manipulation, is described in Chapter 5. Cataract surgery ranks among the most common operating room procedures worldwide. The aim of the surgery is to replace the clouded biological lens with a clear synthetic lens. Despite the prevalence, this operation is currently performed manually by a surgeon, and generally is fast, standardized, and safe. However, the human body is notably non-optimal for performing cataract surgery due to the transparency and fragility of the tissues of the eye. In order to remove the lens, it is standard to break it apart with phacoemulsification, use an irrigation/aspiration handpiece to aspirate the lens material, and then polish any remaining lens material from the capsular bag. Unfortunately, the back of this bag, the posterior capsule, is transparent, mere microns thin, and easily ruptured from contact, ultrasound energy, or pressure. Rupturing the posterior capsule causes the vitreous of the inner eye to spill out, resulting in critical failure of the surgery. Additional information about the location of the tool tip within the eye could be used to reduce the risk of such a failure. To this end, a proof-of-concept modification of a tool to add bioelectrical impedance sensing and tissue classification was developed and tested on porcine eyes. This research is summarized in Chapter 6
“The Human Hand as an Inspiration for Robot Hand Development” presents an edited collection of authoritative contributions in the area of robot hands. The results described in the volume are expected to lead to more robust, dependable, and inexpensive distributed systems such as those endowed with complex and advanced sensing, actuation, computation, and communication capabilities. The twenty-four chapters discuss the field of robotic grasping and manipulation viewed in light of the human hand’s capabilities and push the state-of-the-art in robot hand design and control. Topics discussed include human hand biomechanics, neural control, sensory feedback and perception, and robotic grasp and manipulation. This book will be useful for researchers from diverse areas such as robotics, biomechanics, neuroscience, and anthropologists.
This is a cornerstone publication in robotic grasping. The authors have developed an internationally recognized expertise in this area. Additionally, they designed and built several prototypes which attracted the attention of the scientific community. The purpose of this book is to summarize years of research and to present, in an attractive format, the expertise developed by the authors on a new technology for grasping which has achieved great success both in theory and in practice.
This resource focuses on the principles, modeling, standards, devices, and technologies of rehabilitation engineering and assistive technology. It describes numerous design models and processes, including participatory action design and service delivery models. The book also discusses the components of devices such as cushions, wheelchairs, prostheses, orthoses, hearing aids, and TTYs. The contributors assess industry standards and explore innovative technology aids, such as sensors, robot-assisted therapy, and speech recognition software. The text contains a set of learning objectives and study questions in each chapter as well as a list of definitions at the end of the book.
The Third National Conference on Environmental Science and Technology was held in Greensboro, NC, on September 12-14, 2007. This book contains the following topics: pollution prevention, fate and transport of contaminants, bioremediation, bio-processing, innovative environmental technologies, global climate change, and environmental justice.
Manipulation using dextrous robot hands has been an exciting yet frustrating research topic for the last several years. While significant progress has occurred in the design, construction, and low level control of robotic hands, researchers are up against fundamental problems in developing algorithms for real-time computations in multi-sensory processing and motor control. The aim of this book is to explore parallels in sensorimotor integration in dextrous robot and human hands, addressing the basic question of how the next generation of dextrous hands should evolve. By bringing together experimental psychologists, kinesiologists, computer scientists, electrical engineers, and mechanical engineers, the book covers topics that range from human hand usage in prehension and exploration, to the design and use of robotic sensors and multi-fingered hands, and to control and computational architectures for dextrous hand usage. While the ultimate goal of capturing human hand versatility remains elusive, this book makes an important contribution to the design and control of future dextrous robot hands through a simple underlying message: a topic as complex as dextrous manipulation would best be addressed by collaborative, interdisciplinary research, combining high level and low level views, drawing parallels between human studies and analytic approaches, and integrating sensory data with motor commands. As seen in this text, success has been made through the establishment of such collaborative efforts. The future will hold up to expectations only as researchers become aware of advances in parallel fields and as a common vocabulary emerges from integrated perceptions about manipulation.
Written by primary care sports medicine physicians, The Sports Medicine Resource Manual is the one musculoskeletal textbook that is ideally suited for family medicine and sports medicine providers. Chapters on physical exam and diagnosis are carefully integrated with sections on rehabilitation and management-including a complete guide to procedural skills such as casting, injections, compartment testing, running shoe prescriptions and more. In this conveniently sized volume, sports medicine physicians, orthopedists, emergency medicine physicians, physical therapists, pediatricians, team physicians, athletic trainers, and others share their expertise on everything from diagnosis and proper rehabilitation of musculoskeletal pain to "field side" coverage and acute management of the injured athlete. Designed as both a tutorial and a trusted reference, this easy-to-reference resource will provide you with expert guidance for years to come. Integrates sports medicine diagnosis and management with procedural skills, making this a one-stop reference for outpatient sports and musculoskeletal medicine. Features expert guidance from multiple medical disciplines, providing you with well-rounded coverage from various perspectives. Includes evidence-based guidelines and ratings, wherever available, ensuring you have the best clinical knowledge to deliver the best possible outcomes. Emphasizes rehabilitation of soft tissue injury, fracture management, and musculoskeletal procedures to help you effectively treat more of what you see regularly. Presents appendices on exercise and injury for special populations, including pregnant women and pediatric and geriatric patients, enabling you to appropriately care for the diverse range of individuals in primary care practice. Uses a templated format throughout making reference a snap.
An archive-based, in-depth analysis of the surreal nature and science movies of the pioneering French filmmaker Jean Painlevé Before Jacques-Yves Cousteau, there was Jean Painlevé, a pioneering French scientific and nature filmmaker with a Surrealist’s eye. Creator of more than two hundred films, his studies of strange animal worlds doubled as critical reimaginations of humanity. With an unerring eye for the uncanny and unexpected, Painlevé and his assistant Geneviève Hamon captured oneiric octopuses, metamorphic crustaceans, erotic seahorses, mythic vampire bats, and insatiable predatory insects. Zoological Surrealism draws from Painlevé’s early oeuvre to rethink the entangled histories of cinema, Surrealism, and scientific research in interwar France. Delving deeply into Painlevé’s archive, James Leo Cahill develops an account of “cinema’s Copernican vocation”—how it was used to forge new scientific discoveries while also displacing and critiquing anthropocentric viewpoints. From Painlevé’s engagements with Sergei Eisenstein, Georges Franju, and competing Surrealists to the historiographical dimensions of Jean Vigo’s concept of social cinema, Zoological Surrealism taps never-before-examined sources to offer a completely original perspective on a cutting-edge filmmaker. The first extensive English-language study of Painlevé’s early films and their contexts, it adds important new insight to our understanding of film while also contributing to contemporary investigations of the increasingly surreal landscapes of climate change and ecological emergency.
The 4-volume set LNAI 13013 - 13016 constitutes the proceedings of the 14th International Conference on Intelligent Robotics and Applications, ICIRA 2021, which took place in Yantai, China, during October 22-25, 2021. The 299 papers included in these proceedings were carefully reviewed and selected from 386 submissions. They were organized in topical sections as follows: Robotics dexterous manipulation; sensors, actuators, and controllers for soft and hybrid robots; cable-driven parallel robot; human-centered wearable robotics; hybrid system modeling and human-machine interface; robot manipulation skills learning; micro_nano materials, devices, and systems for biomedical applications; actuating, sensing, control, and instrumentation for ultra-precision engineering; human-robot collaboration; robotic machining; medical robot; machine intelligence for human motion analytics; human-robot interaction for service robots; novel mechanisms, robots and applications; space robot and on-orbit service; neural learning enhanced motion planning and control for human robot interaction; medical engineering.