Download Free Drying Of Loose And Particulate Materials Book in PDF and EPUB Free Download. You can read online Drying Of Loose And Particulate Materials and write the review.

This work furnishes students and practising engineers with a guide to the principles of industrial drying of particulate and loose solids and with advice on improved design procedures. The book focuses on those processes considered by the author to be the most effective in the current field.
In the process industry, understanding the unit operation of particulate drying is imperative to yield products with desired properties and characteristics and to ensure process safety, optimal energy efficiency and drying performance, as well as low environmental impact. There are many techniques and tools available, which can cause confusion. Particulate Drying: Techniques and Industry Applications provides an overview of various particulate drying techniques, their advantages and limitations, industrial applications, and simple design methods. This book: • Covers advances in particulate drying and their importance in the process industry • Highlights recent developments in conventional drying techniques and new drying technologies • Helps readers gain insight into selecting the appropriate drying techniques for a particular product • Summarizes various applications from a wide range of industries, including chemical, food, pharmaceutical, biotech, polymer, mineral, and agro-industries • Projects future research trends and demands in particulate drying This book serves as a reference for process and plant engineers as well as researchers in the fields of particulate processing, mineral processing, food processing, chemical engineering, and mechanical engineering, especially those involved in the selection of drying equipment for particulate solids and R&D of drying of particulate materials.
Food engineering has become increasingly important in the food industry over the years, as food engineers play a key role in developing new food products and improved manufacturing processes. While other textbooks have covered some aspects of this emerging field, this is the first applications-oriented handbook to cover food engineering processes and manufacturing techniques. A major portion of Handbook of Food Engineering Practice is devoted to defining and explaining essential food operations such as pumping systems, food preservation, and sterilization, as well as freezing and drying. Membranes and evaporator systems and packaging materials and their properties are examined as well. The handbook provides information on how to design accelerated storage studies and determine the temperature tolerance of foods, both of which are important in predicting shelf life. The book also examines the importance of physical and rheological properties of foods, with a special look at the rheology of dough and the design of processing systems for the manufacture of dough. The final third of the book provides useful supporting material that applies to all of the previously discussed unit operations, including cost/profit analysis methods, simulation procedures, sanitary guidelines, and process controller design. The book also includes a survey of food chemistry, a critical area of science for food engineers.
This volume consists of the papers presented at the 5th Asia-Pacific Drying Conference, held 13-15 August, 2007 China. The articles feature the most recent progress of drying R&D in the Asia-Pacific region. The proceedings is useful for graduate students, researchers and professionals in the field of drying research and development.
This Fourth Edition book includes 12 new chapters covering computational fluid dynamic simulation; solar, impingement, and pulse combustion drying; drying of fruits, vegetables, sugar, biomass, and coal; physicochemical aspects of sludge drying; and life-cycle assessment of drying systems. Addressing commonly encountered dryers as well as innovative dryers with future potential, the fully revised text not only delivers a comprehensive treatment of the current state of the art, but also serves as a consultative reference for streamlining industrial drying operations to increase energy efficiency and cost-effectiveness.
This comprehensive summary of the state of the art and the ideas behind the reaction engineering approach (REA) to drying processes is an ideal resource for researchers, academics and industry practitioners. Starting with the formulation, modelling and applications of the lumped-REA, it goes on to detail the use of the REA to describe local evaporation and condensation, and its coupling with equations of conservation of heat and mass transfer, called the spatial-REA, to model non-equilibrium multiphase drying. Finally, it summarises other established drying models, discussing their features, limitations and comparisons with the REA. Application examples featured throughout help fine-tune the models and implement them for process design and the evaluation of existing drying processes and product quality during drying. Further uses of the principles of REA are demonstrated, including computational fluid dynamics-based modelling, and further expanded to model other simultaneous heat and mass transfer processes.
This reference details particle characterization, dynamics, manufacturing, handling, and processing for the employment of multiphase reactors, as well as procedures in reactor scale-up and design for applications in the chemical, mineral, petroleum, power, cement and pharmaceuticals industries. The authors discuss flow through fixed beds, elutriation and entrainment, gas distributor and plenum design in fluidized beds, effect of internal tubes and baffles, general approaches to reactor design, applications for gasifiers and combustors, dilute phase pneumatic conveying, and applications for chemical production and processing. This is a valuable guide for chemists and engineers to use in their day-to-day work.
Crystallization Process Systems gives a clear, concise, balanced and up to date presentation of crystallization and solid-liquid separation of the crystalline product. The information is presented in a coherent, concise and logical sequence based on the fundamentals of particulate crystallization processes as systems.By emphasising the analysis, design and operation of particulate crystallization processes as systems, the reader will be able to make a better judgement about the best, cheapest and most effective production method to use. Presents a coherent, concise and logical sequence based on the fundamentals of particulate crystallization processes as systemsEmphasis on the design and optimization of the crystallization processing system
Drying of pharmaceutical products, drying of biotechnologicl products, drying of peat and biofuels, druing of fibrous materials, drying ofpulp and paper, of wood and wood products, drying in mineral proces sing, modeling, measurements, and efficeiencies of infrared eryers for paper drying, drying of coal, drying of coated webs, drying of polymersupeheated stema drying, dryer feeder systems, dryer emision control systems, cost estimation methods for dryers, energy aspects in drying safeth aspects of industrial dryers, humidity measurements, control of industrial dryers.
This book discusses conventional as well as unconventional wood drying technologies. It covers fundamental thermophysical and energetic aspects and integrates two complex thermodynamic systems, conventional kilns and heat pumps, aimed at improving the energy performance of dryers and the final quality of dried lumber. It discusses advanced components, kiln energy requirements, modeling, and software and emphasizes dryer/heat pump optimum coupling, control, and energy efficiency. Problems are included in most chapters as practical, numerical examples for process and system/components calculation and design. The book presents promising advancements and R&D challenges and future requirements.