Download Free Drug Repurposing For Emerging Infectious Diseases And Cancer Book in PDF and EPUB Free Download. You can read online Drug Repurposing For Emerging Infectious Diseases And Cancer and write the review.

Drug Repurposing in Cancer Therapy: Approaches and Applications provides comprehensive and updated information from experts in basic science research and clinical practice on how existing drugs can be repurposed for cancer treatment. The book summarizes successful stories that may assist researchers in the field to better design their studies for new repurposing projects. Sections discuss specific topics such as in silico prediction and high throughput screening of repurposed drugs, drug repurposing for overcoming chemoresistance and eradicating cancer stem cells, and clinical investigation on combination of repurposed drug and anticancer therapy. Cancer researchers, oncologists, pharmacologists and several members of biomedical field who are interested in learning more about the use of existing drugs for different purposes in cancer therapy will find this to be a valuable resource. - Presents a systematic and up-to-date collection of the research underpinning the various drug repurposing approaches for a quick, but in-depth understanding on current trends in drug repurposing research - Brings better understanding of the drug repurposing process in a holistic way, combining both basic and clinical sciences - Encompasses a collection of successful stories of drug repurposing for cancer therapy in different cancer types
​This book presents drug repurposing strategies to combat infectious diseases and cancer. It discusses key experimental and in silico approaches for modern drug repositioning, including signature matching, molecular docking, genome-wide associated studies, and network-based approaches aided by artificial intelligence. Further, the book presents various computational and experimental strategies for better understanding disease mechanisms and identify repurposed drug candidates for personalized pharmacotherapy. It also explores the databases for drug repositioning, summarizes the approaches taken for drug repositioning, and highlights and compares their characteristics and challenges. Towards the end, the book discusses challenges and limitations encountered in computational drug repositioning.
Drug repurposing or drug repositioning is a new approach to presenting new indications for common commercial and clinically approved existing drugs. For example, chloroquine, an old antimalarial drug, showed promising results for treating COVID-19, interfering with MDR in several types of cancer, and chemosensitizing human leukemic cells.This book focuses on the hypothesis, risk/benefits, and economic impacts of drug repurposing on drug discovery in dermatology, infectious diseases, neurological disorders, cancer, and orphan diseases. It brings together up-to-date research to provide readers with an informative, illustrative, and easy-to-read book useful for students, clinicians, and the pharmaceutical industry.
Drug repositioning is the process of identifying new indications for existing drugs. At present, the conventional de novo drug discovery process requires an average of about 14 years and US$2.5 billion to approve and launch a drug. Drug repositioning can reduce the time and cost of this process because it takes advantage of drugs already in clinical use for other indications or drugs that have cleared phase I safety trials but have failed to show efficacy in the intended diseases. Historically, drug repositioning has been realized through serendipitous clinical observations or improved understanding of disease mechanisms. However, recent technological advances have enabled a more systematic approach to drug repositioning. This eBook collects 16 articles from 112 authors, providing readers with current advances and future perspectives of drug repositioning.
In the past half century, deadly disease outbreaks caused by novel viruses of animal origin - Nipah virus in Malaysia, Hendra virus in Australia, Hantavirus in the United States, Ebola virus in Africa, along with HIV (human immunodeficiency virus), several influenza subtypes, and the SARS (sudden acute respiratory syndrome) and MERS (Middle East respiratory syndrome) coronaviruses - have underscored the urgency of understanding factors influencing viral disease emergence and spread. Emerging Viral Diseases is the summary of a public workshop hosted in March 2014 to examine factors driving the appearance, establishment, and spread of emerging, re-emerging and novel viral diseases; the global health and economic impacts of recently emerging and novel viral diseases in humans; and the scientific and policy approaches to improving domestic and international capacity to detect and respond to global outbreaks of infectious disease. This report is a record of the presentations and discussion of the event.
Polyamines are ubiquitous molecules that are involved in a number of important cellular processes. Aberrations in their function or metabolism play a role in diseases such as cancer and parasitic infection. A number of validated drug targets have been identified, including enzymes in the polyamine biosynthetic and catabolic pathways and the S-adenosylmethionine synthetic and salvage pathways. Polyamine Drug Discovery is the first comprehensive volume to cover all aspects of the design and development of potential therapeutics targeting polyamine metabolism. The book details research progress from 1975 to the present date and discusses the design and use of polyamine metabolism inhibitors as therapeutic agents. Various polyamine-containing drugs are described that can be used in chemotherapy, and as treatments for infections including trypanosomiasis, leishmaniasis and malaria. Finally, the roles of polyamine analogues in chemoprevention, polyamine-containing vectors for gene delivery, and the design of polyamine-based epigenetic modulators are detailed. Each chapter addresses a different aspect of polyamine drug discovery and all are written by medicinal and biological chemists with particular expertise in developing agents that modulate polyamine metabolism or function. The book will increase the visibility of polyamine drug discovery among pharmaceutical researchers and provide a valuable reference for everyone working in the field.
In Silico Drug Design: Repurposing Techniques and Methodologies explores the application of computational tools that can be utilized for this approach. The book covers theoretical background and methodologies of chem-bioinformatic techniques and network modeling and discusses the various applied strategies to systematically retrieve, integrate and analyze datasets from diverse sources. Other topics include in silico drug design methods, computational workflows for drug repurposing, and network-based in silico screening for drug efficacy. With contributions from experts in the field and the inclusion of practical case studies, this book gives scientists, researchers and R&D professionals in the pharmaceutical industry valuable insights into drug design. Discusses the theoretical background and methodologies of useful techniques of cheminformatics and bioinformatics that can be applied for drug repurposing Offers case studies relating to the in silico modeling of FDA-approved drugs for the discovery of antifungal, anticancer, antiplatelet agents, and for drug therapies against diseases Covers tools and databases that can be utilized to facilitate in silico methods for drug repurposing
Rare diseases collectively affect millions of Americans of all ages, but developing drugs and medical devices to prevent, diagnose, and treat these conditions is challenging. The Institute of Medicine (IOM) recommends implementing an integrated national strategy to promote rare diseases research and product development.
Discusses how to fight Ebola, SARS Corona, and other known or emerging human viruses by building on the successes in antiviral therapy of the past decades Written by leading medicinal chemists from academia and industry, this book discusses the entire field of antiviral drug discovery and development from a medicinal chemistry perspective, focusing on antiviral drugs, targets, and viral disease mechanisms. It provides an outlook on emerging pathogens such as Ebola, Zika, West Nile, Lassa, and includes a chapter on SARS Coronoavirus-2 causing the present pandemic. New Drug Development for Known and Emerging Viruses describes the discovery and development process for antiviral agents for different classes of viruses and targets based on the experiences from the nine human viruses for which approved drugs are on the market (HIV, HCV, Influenza, RSV, HBV, HPV, HCMV, HSV, and VZV). It covers the properties and potential of 20 classes of currently approved antivirals, including combination drugs, and looks at novel antiviral strategies against emerging viruses. Covers the entire field of antiviral drug discovery and development Addresses the need for antiviral drugs to combat major health threats such as Ebola, Zika, West Nile, and SARS Coronavirus-2 Summarizes the successes of the past 15 years in developing ground-breaking medicines against 9 major human viruses, both from the medicinal chemistry and the pharmacological angle Discusses practical and strategic challenges in the drug discovery and development process, including screening technologies, latency, and toxicity issues New Developments in Antiviral Drugs is an important book for medicinal chemists, pharmaceutical chemists, virologists, and epidemiologists, and will be of great interest to those in the ;pharmaceutical industry and public health agencies.
Clinical Trials, Second Edition, offers those engaged in clinical trial design a valuable and practical guide. This book takes an integrated approach to incorporate biomedical science, laboratory data of human study, endpoint specification, legal and regulatory aspects and much more with the fundamentals of clinical trial design. It provides an overview of the design options along with the specific details of trial design and offers guidance on how to make appropriate choices. Full of numerous examples and now containing actual decisions from FDA reviewers to better inform trial design, the 2nd edition of Clinical Trials is a must-have resource for early and mid-career researchers and clinicians who design and conduct clinical trials. - Contains new and fully revised material on key topics such as biostatistics, biomarkers, orphan drugs, biosimilars, drug regulations in Europe, drug safety, regulatory approval and more - Extensively covers the "study schema" and related features of study design - Incorporates laboratory data from studies on human patients to provide a concrete tool for understanding the concepts in the design and conduct of clinical trials - Includes decisions made by FDA reviewers when granting approval of a drug as real world learning examples for readers