Download Free Drosophila Oogenesis Book in PDF and EPUB Free Download. You can read online Drosophila Oogenesis and write the review.

This detailed volume compiles numerous methods to explore fly oogenesis. Beginning with updated protocols from isolating and staining the ovary to numerous imaging techniques and genetic protocols for cell-specific assessment and CRISPR-mediated mutagenesis, the volume continues by detailing techniques from assessing cytoskeletal structures to uncovering protein-protein interactions, with closing chapters exploring how Drosophila oogenesis can be used in the classroom and in outreach programs to increase interest in biomedical research, STEM education, and STEM careers. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Drosophila Oogenesis: Methods and Protocols serves as an ideal guide for both new and expert researchers working with this robust and versatile model organism.
The genetic development of eggs in fruit fly (Drosophilia) is the most important model used by developmental biologists in understanding how we go from a fertilized egg to a fully developed organism. Insights into fruit fly genetics have also begun to provide an idea as to how humans develop. This text amasses and organizes information on nearly 400 genes affecting the origin and development of ova. It should aid understanding of the crucial processes in organisms development.
Grauzone and Completion of Meiosis During Drosophila Oogenesis describes the work behind a major, award winning discovery: the establishment of a new pathway that specifically regulates the female meiosis, a process essential for sexual reproduction. This book chronicles a new gene mapping method and the cloning and documentation of several types of genes that were proven to have significant influence on the cell cycle. It is of interest to anyone doing work with fruit flies, both graduate students and principal investigators.
Eggs of all animals contain mRNAs and proteins that are supplied to or deposited in the egg as it develops during oogenesis. These maternal gene products regulate all aspects of oocyte development, and an embryo fully relies on these maternal gene products for all aspects of its early development, including fertilization, transitions between meiotic and mitotic cell cycles, and activation of its own genome. Given the diverse processes required to produce a developmentally competent egg and embryo, it is not surprising that maternal gene products are not only essential for normal embryonic development but also for fertility. This review provides an overview of fundamental aspects of oocyte and early embryonic development and the interference and genetic approaches that have provided access to maternally regulated aspects of vertebrate development. Some of the pathways and molecules highlighted in this review, in particular, Bmps, Wnts, small GTPases, cytoskeletal components, and cell cycle regulators, are well known and are essential regulators of multiple aspects of animal development, including oogenesis, early embryogenesis, organogenesis, and reproductive fitness of the adult animal. Specific examples of developmental processes under maternal control and the essential proteins will be explored in each chapter, and where known conserved aspects or divergent roles for these maternal regulators of early vertebrate development will be discussed throughout this review. Table of Contents: Introduction / Oogenesis: From Germline Stem Cells to Germline Cysts / Oocyte Polarity and the Embryonic Axes: The Balbiani Body, an Ancient Oocyte Asymmetry / Preparing Developmentally Competent Eggs / Egg Activation / Blocking Polyspermy / Cleavage/ Mitosis: Going Multicellular / Maternal-Zygotic Transition / Reprogramming: Epigenetic Modifications and Zygotic Genome Activation / Dorsal-Ventral Axis Formation before Zygotic Genome Activation in Zebrafish and Frogs / Maternal TGF-β and the Dorsal-Ventral Embryonic Axis / Maternal Control After Zygotic Genome Activation / Compensation by Stable Maternal Proteins / Maternal Contributions to Germline Establishment or Maintenance / Perspective / Acknowledgments / References
This volume provides current up-to-date protocols for preparing the ovary for various imaging techniques, genetic protocols for generating mutant clones, mosaic analysis and assessing cell death. Chapters address methods for performing genome wide gene expression analysis and bioinformatics for studies of RNA-protein interactions. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Drosophila Oogenesis: Methods and Protocols aims to ensure successful results in the further study of this vital field.
This book will give an overview of insect ovaries, showing the diversities and the common traits in egg growth processes. The idea to write this book developed while looking at the flood of information which appeared in the early 1980s on early pattern formation in Drosophila embryos. At this time a significant breakthrough was made in studies of this little fly, combining molecular biological methods with classical and molecular genetics. The answers to questions about early pattern formation raised new questions about the architecture of ovaries and the growth of eggs within these ovaries. However, by concentrating only on Drosophila it is not possible to form an adequate picture of what is going on in insect ovaries, since the enormous diversity found among insects is not considered sufficiently. Almost forgotten, but the first to study the architecture of ovaries, was Alexander Brandt writing in 1878 in aber das Ei und seine Bildungsstaette (On the egg and its organ of development). More than 100 years later, a series of ten books or more would be required to survey all the serious informa tion we have today on insect oogenesis. Thus, this book is a personal selection and personal view on the theme, and the authors must be excused by all those scientists whose papers could not be included. The book briefly describes the ectodemes, i. e.