Download Free Drosophila Melanogaster As A Model Organism To Study Human Neurodegenerative Diseases Book in PDF and EPUB Free Download. You can read online Drosophila Melanogaster As A Model Organism To Study Human Neurodegenerative Diseases and write the review.

Drosophila gives an overview of the ways in which Drosophila is currently being used as a model organism to further our understanding of a spectrum of human neurological diseases. Each chapter is written by respected researchers and gives an excellent account of the subject that is suitable for postgraduate and postdoctoral researchers.
Most biological pathways, physical and neurological properties are highly conserved between humans and Drosophila and nearly 75% of human disease-causing genes have a functional homologue in Drosophila. This volume provides recent advances in Drosophila models for various human diseases, with each chapter providing a review of studies involving Drosophila models, as well as detailed protocols commonly used in laboratories. Starting with a review of Drosophila’s value as a highly tractable model organism for studying human diseases, subsequent chapters present Drosophila models for specific human diseases. The book provides a useful resource for all scientists who are starting to use the Drosophila model in their studies, and for researchers working in the pharmaceutical industry and using new screening models to develop new medicines for various diseases.
Motor neuron diseases are the most catastrophic of neurodegenerative disorders. The cognitive function is spared, but the motor neuron degeneration translates into progressive muscle weakness and paralysis that propel the afflicted patient to eventual death. Neurodegenerative disorders constitute one of the major challenges of modern medicine in view of the current lack of effective therapies. The fruit fly, Drosophila melanogaster, has a distinguished history as an important model organism capable of shaping our fundamental understanding of life. Remarkably, the vast majority of all known human disease genes have a similar fly counterpart and at the molecular and physiological level, the basic principles of neuromuscular function are amazingly conserved between humans and Drosophila. Combine this with the presence of numerous genetic tools developed over the last century allowing genes and the proteins they encode to be manipulated swiftly to decipher their in vivo function and you have a superb genetic animal model organism of disease.This publication singles out the past and recent accomplishments of Drosophila in modelling motor neuron disease including amyotrophic lateral sclerosis (Lou Gehrigs disease), hereditary spastic paraplegias, Charcot-Marie-Tooth disease, spinal and bulbar muscular atrophy (Kennedys disease) and spinal muscular atrophy. The emphasis is on recent developments including the emerging molecular pathways underpinning these disorders. Genetic screens aimed at identifying novel genes that cause motor neuron degeneration or finding modifiers of the phenotype resulting from the disruption of disease-causative genes are also tackled. Importantly, this collection provides an inspiring look at the indispensability of the fruit fly, and of model organisms in general, to neuroscience research.
This book is aimed at generating an updated reservoir of scientific endeavors undertaken to unravel the complicated yet intriguing topic of neurodegeneration. Scientists from Europe, USA and India who are experts in the field of neurodegenerative diseases have contributed to this book. This book will help readers gain insight into the recent knowledge obtained from Drosophila model, in understanding the molecular mechanisms underlying neurodegenerative disorders and also unravel novel scopes for therapeutic interventions. Different methodologies available to create humanized fly models that faithfully reflects the pathogenicities associated with particular disorders have been described here. It also includes information on the exciting area of neural stem cells. A brief discussion on neurofibrillary tangles, precedes the elaborate description of lessons learnt from Drosophila about Alzheimer's, Parkinson’s, Spinomuscular Atrophy, Huntington’s diseases, RNA expansion disorders and Hereditary Spastic Paraplegia. We have concluded the book with the use of Drosophila for identifying pharmacological therapies for neurodegenerative disorders. The wide range of topics covered here will not only be relevant for beginners who are new to the concept of the extensive utility of Drosophila as a model to study human disorders; but will also be an important contribution to the scientific community, with an insight into the paradigm shift in our understanding of neurodegenerative disorders. Completed with informative tables and communicative illustrations this book will keep the readers glued and intrigued. We have comprehensively anthologized the lessons learnt on neurodegeneration from Drosophila and have thus provided an insight into the multidimensional aspects of pathogenicities of majority of the neurodegenerative disorders.
This book contains 12 chapters divided into two sections. Section 1 is "Drosophila - Model for Genetics." It covers introduction, chromosomal polymorphism, polytene chromosomes, chromosomal inversion, chromosomal evolution, cell cycle regulators in meiosis and nongenetic transgenerational inheritance in Drosophila. It also includes ecological genetics, wild-type strains, morphometric analysis, cytostatics, frequencies of early and late embryonic lethals (EEL and LEL) and mosaic imaginal discs of Drosophila for genetic analysis in biomedical research. Section 2 is "Drosophila - Model for Therapeutics." It explains Drosophila as model for human diseases, neurodegeneration, heart-kidney metabolic disorders, cancer, pathophysiology of Parkinson's disease, dopamine, neuroprotective therapeutics, mitochondrial dysfunction and translational research. It also covers Drosophila role in ubiquitin-carboxyl-terminal hydrolase-L1 (UCH-L1) protein, eye development, anti-dUCH antibody, neuropathy target esterase (NTE), organophosphorous compound-induced delayed neuropathy (OPIDN) and hereditary spastic paraplegia (HSP). It also includes substrate specificities, kinetic parameters of recombinant glutathione S-transferases E6 and E7 (DmGSTE6 and DmGSTE7), detoxification and insecticidal resistance and antiviral immunity in Drosophila.
A single species of fly, Drosophila melanogaster, has been the subject of scientific research for more than one hundred years. Why does this tiny insect merit such intense scrutiny? Drosophila’s importance as a research organism began with its short life cycle, ability to reproduce in large numbers, and easy-to-see mutant phenotypes. Over time, laboratory investigation revealed surprising similarities between flies and other animals at the level of genes, gene networks, cell interactions, physiology, immunity, and behavior. Like humans, flies learn and remember, fight microbial infection, and slow down as they age. Scientists use Drosophila to investigate complex biological activities in a simple but intact living system. Fly research provides answers to some of the most challenging questions in biology and biomedicine, including how cells transmit signals and form ordered structures, how we can interpret the wealth of human genome data now available, and how we can develop effective treatments for cancer, diabetes, and neurodegenerative diseases. Written by a leader in the Drosophila research community, First in Fly celebrates key insights uncovered by investigators using this model organism. Stephanie Elizabeth Mohr draws on these “first in fly” findings to introduce fundamental biological concepts gained over the last century and explore how research in the common fruit fly has expanded our understanding of human health and disease.
The fruit fly, Drosophila melanogaster (Meigen, 1830) has been established as a key model organism thanks in part to their considerable biological similarity to mammals and an abundance of available genetic tools. Drosophila have been used to model many human disease states and have been critical in elucidating the genetic mechanisms contributing to them. Part I of this chapter covered basic Drosophila biology and relevant genetic tools available to Drosophila researchers. Here in part II, we review the use of Drosophila as a model organism to study neurodegenerative disorders, cardiovascular diseases, kidney diseases, cancer, metabolic disorders, and immune disorders, as well as key findings made in those fields thanks to Drosophila research.
The second volume continues to fill the gap in protein review and protocol literature. It does this while summarizing recent achievements in the understanding of the relationships between protein misfoldings, aggregation, and development of protein deposition disorders. The focus of Part B is the molecular basis of differential disorders.